Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 785(2025)
High Mass Loading and Stable Cycling Micrometer Tin Electrode Material for Sodium-Ion Batteries
[1] [1] GUO K X, ZHANG Y H, WANG Q, et al. Boosting the sodium-ion transport and surface pseudocapacitance of a SnO2 nanoflower at a high mass loading level for high areal capacity and fast sodium-ion storage[J]. ACS Appl Nano Mater, 2024, 7(11): 12304–12311.
[2] [2] CHU Y, ZHANG J, ZHANG Y B, et al. Reconfiguring hard carbons with emerging sodium-ion batteries: A perspective[J]. Adv Mater, 2023, 35(31): e2212186.
[3] [3] ZHANG B, ROUSSE G, FOIX D, et al. Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries[J]. Adv Mater, 2016, 28(44): 9824–9830.
[4] [4] WU X, LAN X X, HU R Z, et al. Tin-based anode materials for stable sodium storage: Progress and perspective[J]. Adv Mater, 2022, 34(7): e2106895.
[5] [5] WANG J W, LIU X H, MAO S X, et al. Microstructural evolution of tin nanoparticles duringin situsodium insertion and extraction[J]. Nano Lett, 2012, 12(11): 5897–5902.
[6] [6] NAM D H, KIM T H, HONG K S, et al. Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries[J]. ACS Nano, 2014, 8(11): 11824–11835.
[7] [7] HUANG J Q, GUO X Y, DU X Q, et al. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries[J]. Energy Environ Sci, 2019, 12(5): 1550–1557.
[8] [8] ZHENG C, JI D L, YAO Q, et al. Electrostatic shielding boosts electrochemical performance of alloy-type anode materials of sodium-ion batteries[J]. Angew Chem Int Ed, 2023, 62(14): e202214258.
[9] [9] WANG H, MA Y J, ZHANG W M. Electrospun Fe3O4-Sn@Carbon nanofibers composite as efficient anode material for Li-ion batteries[J]. Nanomaterials, 2021, 11(9): 2203.
[10] [10] WANG Z M, YU L, CHANG L M, et al. Facile synthesis of nitrogen-doped Sn@NC composites as high-performance anodes for lithium-ion batteries[J]. Int J Hydrog Energy, 2018, 43(49): 22401–22408.
[11] [11] YE W B, FENG Z Y, XIONG D P, et al. Mesoporous C-covered Sn/SnO2-Ni nanoalloy particles as anode materials for high-performance lithium/sodium-ion batteries[J]. Electrochim Acta, 2023, 471: 143401.
[12] [12] HAMZA M, ZHANG S Y, XU W Q, et al. Scalable engineering of hierarchical layered micro-sized silicon/graphene hybridsviadirect foaming for lithium storage[J]. Nanoscale, 2023, 15(35): 14338–14345.
[13] [13] DU X Q, GAO Y, HOU Z, et al. Stabilizing microsized Sn anodes for Na-ion batteries with extended ether electrolyte chemistry[J]. ACS Appl Energy Mater, 2022, 5(2): 2252–2259.
[14] [14] KIM C, KIM I, KIM H, et al. A self-healing Sn anode with an ultra-long cycle life for sodium-ion batteries[J]. J Mater Chem A, 2018, 6(45): 22809–22818.
[15] [15] YU D W, GUO K X, HOU F X, et al. Ti─O─C bonding at 2D heterointerfaces of 3D composites for fast sodium ion storage at high mass loading level[J]. Small, 2024, 20(29): e2312167.
[16] [16] FANG Z Y, FAN S C, YAN Z R, et al. Root-growth-inspired self-morphology-evolution of microsized bismuth surrounded by microsized hard carbon for stabilized sodium-ion storage[J]. Adv Mater, 2024: e2412636.
[17] [17] DAALI A, ZHOU X W, ZHAO C, et al.In situmicroscopy and spectroscopy characterization of microsized Sn anode for sodium-ion batteries[J]. Nano Energy, 2023, 115: 108753.
[18] [18] HUANG Y S, WANG C N, LV H F, et al. Bifunctional interphase promotes Li+ de-solvation and transportation enabling fast-charging graphite anode at low temperature[J]. Adv Mater, 2024, 36(13): e2308675.
[19] [19] CHEN J, FAN X L, LI Q, et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nat Energy, 2020, 5: 386–397.
[20] [20] TAN L, HU R Z, ZHANG H Y, et al. Subzero temperature promotes stable lithium storage in SnO2[J]. Energy Storage Mater, 2021, 36: 242–250.
[21] [21] JIANG Y L, SHEN Y H, DONG J, et al. Surface pseudocapacitive mechanism of molybdenum phosphide for high-energy and high-power sodium-ion capacitors[J]. Adv Energy Mater, 2019, 9(27): 1900967.
[22] [22] SHI S S, SUN C L, YIN X P, et al. FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications[J]. Adv Funct Mater, 2020, 30(10): 1909283.
[23] [23] NIU F E, YANG J, WANG N N, et al. MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries[J]. Adv Funct Mater, 2017, 27(23): 1700522.
[24] [24] SHENG M H, ZHANG F, JI B F, et al. A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density[J]. Adv Energy Mater, 2017, 7(7): 1601963.
[25] [25] WANG L C, ZHAO X J, DAI S R, et al. High-rate and stable iron phosphide nanorods anode for sodium-ion battery[J]. Electrochim Acta, 2019, 314: 142–150.
Get Citation
Copy Citation Text
WANG Qin, ZHANG Yangang, LIANG Junfei, WANG Hua. High Mass Loading and Stable Cycling Micrometer Tin Electrode Material for Sodium-Ion Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 785
Special Issue:
Received: Jan. 2, 2025
Accepted: May. 29, 2025
Published Online: May. 29, 2025
The Author Email: LIANG Junfei (junfeiliang@buaa.edu.cn)