Opto-Electronic Engineering, Volume. 50, Issue 10, 230146-1(2023)
Study on retinal OCT segmentation with dual-encoder
[1] Hayreh S S, Zimmerman M B. Fundus changes in branch retinal arteriolar occlusion[J]. Retina, 35, 2060-2066(2015).
[2] Fraz M M, Remagnino P, Hoppe A et al. Blood vessel segmentation methodologies in retinal images—A survey[J]. Comput Methods Programs Biomed, 108, 407-433(2012).
[3] Li Y Y, Fan J Y, Jiang T L et al. Review of the development of optical coherence tomography imaging navigation technology in ophthalmic surgery[J]. Opto-Electron Eng, 50, 220027(2023).
[4] Jiang P Q, Wang P H. Research on dispersion compensation technology for SDOCT system[J]. Opto-Electron Eng, 48, 210184(2021).
[5] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[6] Tranos P G, Wickremasinghe S S, Stangos N T et al. Macular edema[J]. Surv Ophthalmol, 49, 470-490(2004).
[7] Monemian M, Rabbani H. Mathematical analysis of texture indicators for the segmentation of optical coherence tomography images[J]. Optik, 219, 165227(2020).
[8] Liu Y H, Carass A, He Y F et al. Layer boundary evolution method for macular OCT layer segmentation[J]. Biomed Opt Express, 10, 1064-1080(2019).
[9] Yang P, Peng Q, Liu W P et al. A segmentation algorithm of OCT image for macula edema[J]. J Biomed Eng, 28, 1001-1006(2011).
[10] He J T, Chen M H, Jia W Y et al. Segmentation of diabetic macular edema in OCT retinal images[J]. Opto-Electron Eng, 45, 170605(2018).
[11] Hussain A, Bhuiyan A, Turpin A et al. Automatic identification of pathology-distorted retinal layer boundaries using SD-OCT imaging[J]. IEEE Trans Biomed Eng, 64, 1638-1649(2017).
[14] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C](2015).
[15] Wu Y C, Lin L, Wang J X. Application of semantic segmentation based on convolutional neural network in medical images[J]. J Biomed Eng, 37, 533-540(2020).
[16] Qin C B, Song Z Y, Zeng J Y et al. Deeply supervised breast cancer segmentation combined with multi-scale and attention-residuals[J]. Opt Precis Eng, 29, 877-895(2021).
[18] Roy A G, Conjeti S, Karri S P K et al. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks[J]. Biomed Opt Express, 8, 3627-3642(2017).
[19] Yuan K, Huo L. Multiple-scale inpainting convolutional neural network for retinal OCT image segmentation[J]. Chin J Lasers, 48, 1507004(2021).
[20] Liu W, Sun Y K, Ji Q G. MDAN-UNet: multi-scale and dual attention enhanced nested U-net architecture for segmentation of optical coherence tomography images[J]. Algorithms, 13, 60(2020).
[21] Ngo L, Cha J, Han J H. Deep neural network regression for automated retinal layer segmentation in optical coherence tomography images[J]. IEEE Trans Image Process, 29, 303-312(2020).
[25] Chiu S J, Allingham M J, Mettu P S et al. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema[J]. Biomed Opt Express, 6, 1172-1194(2015).
[26] Mondal P K, Prodhan U K, AI Mamun S et al. Segmentation of white blood cells using fuzzy C means segmentation algorithm[J]. IOSR J Comput Eng, 16, 1-5(2014).
Get Citation
Copy Citation Text
Minghui Chen, Teng Wang, Yuan Yuan, Shuting Ke. Study on retinal OCT segmentation with dual-encoder[J]. Opto-Electronic Engineering, 2023, 50(10): 230146-1
Category: Article
Received: Jun. 26, 2023
Accepted: Nov. 14, 2023
Published Online: Jan. 22, 2024
The Author Email: Minghui Chen (陈明惠)