Chinese Journal of Lasers, Volume. 50, Issue 1, 0113015(2023)
Ultraviolet Photodetector Based on Wide Bandgap Two-Dimensional Semiconductor TlGaS2
[1] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).
[2] Tan P H, Zhang L J, Dai L et al. Preface to the special issue on 2D-materials-related physical properties and optoelectronic devices[J]. Journal of Semiconductors, 40, 060101(2019).
[3] Soci C, Zhang A, Xiang B et al. ZnO nanowire UV photodetectors with high internal gain[J]. Nano Letters, 7, 1003-1009(2007).
[4] Yan Y, Yang J H, Du J et al. Cross-substitution promoted ultrawide bandgap up to 4.5 eV in a 2D semiconductor: gallium thiophosphate[J]. Advanced Materials, 33, 2008761(2021).
[5] Gong C H, Chu J W, Qian S F et al. Large-scale ultrathin 2D wide-bandgap BiOBr nanoflakes for gate-controlled deep-ultraviolet phototransistors[J]. Advanced Materials, 32, 1908242(2020).
[6] Yang W, Xin K Y, Yang J H et al. 2D ultrawide bandgap semiconductors: odyssey and challenges[J]. Small Methods, 6, 2101348(2022).
[7] Wang J, Luo L B. Advances in Ga2O3-based solar-blind ultraviolet photodetectors[J]. Chinese Journal of Lasers, 48, 1100001(2021).
[8] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).
[9] Zhu W K, Wei X, Yan F G et al. Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction[J]. Journal of Semiconductors, 40, 092001(2019).
[10] Huang C, Jin Y B, Wang W Y et al. Manganese and chromium doping in atomically thin MoS2[J]. Journal of Semiconductors, 38, 033004(2017).
[11] Wang Q H, Kalantar-Zadeh K, Kis A et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 7, 699-712(2012).
[12] Deng N Q, Tian H, Zhang J et al. Black phosphorus junctions and their electrical and optoelectronic applications[J]. Journal of Semiconductors, 42, 081001(2021).
[13] Guo Q S, Pospischil A, Bhuiyan M et al. Black phosphorus mid-infrared photodetectors with high gain[J]. Nano Letters, 16, 4648-4655(2016).
[14] Wang Y H, Sun S, Zhang J L et al. Recent progress in epitaxial growth of two-dimensional phosphorus[J]. SmartMat, 2, 286-298(2021).
[15] Ren Z H, Zhong M Z, Yang J H et al. A polarization-sensitive photodetector based on a AsP/MoS2 heterojunction[J]. Chinese Optics, 14, 135-144(2021).
[16] Wang X T, Li Y T, Huang L et al. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide[J]. Journal of the American Chemical Society, 139, 14976-14982(2017).
[17] Zhou X, Gan L, Zhang Q et al. High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition[J]. Journal of Materials Chemistry C, 4, 2111-2116(2016).
[18] Yusi Y, Liu S C, Wang X et al. Polarization-sensitive ultraviolet photodetection of anisotropic 2D GeS2[J]. Advanced Functional Materials, 29, 1900411(2019).
[19] Wu J, Wang F K, Li H B et al. Epitaxial growth of 2D ultrathin metastable γ-Bi2O3 flakes for high performance ultraviolet photodetection[J]. Small, 18, 104244(2022).
[20] Liu H, Meng J H, Zhang X W et al. High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride[J]. Nanoscale, 10, 5559-5565(2018).
[21] Delgado G E, Mora A J, Pérez F V et al. Crystal structure of the ternary semiconductor compound thallium gallium sulfide, TlGaS2[J]. Physica B: Condensed Matter, 391, 385-388(2007).
[22] Aydinli A, Ellialtioğlu R, Allakhverdiev K R et al. Low-temperature phase transitions in TlGaS2 layer crystals[J]. Solid State Communications, 88, 387-390(1993).
[23] Xin X F, Liu F, Yan X Q et al. Two-photon absorption and non-resonant electronic nonlinearities of layered semiconductor TlGaS2[J]. Optics Express, 26, 33895-33905(2018).
[24] Isik M, Gasanly N M, Turan R. Spectroscopic ellipsometry study of above-band gap optical constants of layered structured TlGaSe2, TlGaS2 and TlInS2 single crystals[J]. Physica B: Condensed Matter, 407, 4193-4197(2012).
[25] Isik M, Gasanly N M, Korkmaz F. Multiphonon absorption processes in layered structured TlGaS2, TlInS2 and TlGaSe2 single crystals[J]. Physica B: Condensed Matter, 421, 50-52(2013).
[26] Gasanly N M, Aydinli A, Bek A et al. Low-temperature photoluminescence spectra of layered semiconductor TlGaS2[J]. Solid State Communications, 105, 21-24(1998).
[27] Kawabata T, Shim Y, Wakita K et al. Dielectric function spectra and inter-band optical transitions in TlGaS2[J]. Thin Solid Films, 571, 589-592(2014).
[28] Qasrawi A F, Gasanly N M. Optoelectronic and electrical properties of TlGaS2 single crystal[J]. Physica Status Solidi (a), 202, 2501-2507(2005).
[29] Fu Y, He D W, He J Q et al. Photocarrier dynamics in TlGaS2 nanoflakes and van der Waals heterostructures with hexagonal boron nitride and WS2 nanoflakes: implications for optoelectronic applications[J]. ACS Applied Nano Materials, 3, 8702-8707(2020).
[30] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 54, 11169-11186(1996).
[31] Blöchl P E. Projector augmented-wave method[J]. Physical Review B, 50, 17953-17979(1994).
[32] Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential[J]. The Journal of Chemical Physics, 118, 8207-8215(2003).
[33] Ashraf I M. Photophysical properties of TlGaS2 layered single crystals[J]. The Journal of Physical Chemistry B, 108, 10765-10769(2004).
[34] Tang K W, Qi W H, Wei Y R et al. High-throughput calculation of interlayer van der Waals forces validated with experimental measurements[J]. Research, 2022, 9765121(2022).
[35] Major G H, Fairley N, Sherwood P M A et al. Practical guide for curve fitting in X-ray photoelectron spectroscopy[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 38, 061203(2020).
[36] Lin Y N, Wu Y D, Cheng H Y et al. Near-infrared integrated photodetector based on PdSe2 nanowires film/Si heterojunction[J]. Acta Optica Sinica, 41, 2125001(2021).
[37] Xin B, Wu Y T, Liu X R et al. High performance UV photodetector based on 2D non-layered CuGaS2 nanosheets[J]. Semiconductor Science and Technology, 34, 055007(2019).
[38] Xiao H, Liang T, Xu M S. Growth of ultraflat PbI2 nanoflakes by solvent evaporation suppression for high-performance UV photodetectors[J]. Small, 15, 1901767(2019).
[39] Gao Y, Lei S J, Kang T T et al. Bias-switchable negative and positive photoconductivity in 2D FePS3 ultraviolet photodetectors[J]. Nanotechnology, 29, 244001(2018).
[40] Yan Y, Xiong W Q, Li S S et al. Direct wide bandgap 2D GeSe2 monolayer toward anisotropic UV photodetection[J]. Advanced Optical Materials, 7, 1900622(2019).
[41] Wu G H, Du L Y, Deng C C et al. High-performance self-driven single GaN-based p-i-n homojunction one-dimensional microwire ultraviolet photodetectors[J]. ACS Applied Electronic Materials, 4, 3807-3814(2022).
[42] Kong W Y, Wu G A, Wang K Y et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Advanced Materials, 28, 10725-10731(2016).
[43] Sun L Q, Wang D K, Fang D et al. Quantum dots modified ZnO based fast-speed response ultraviolet photodetector[J]. Chinese Journal of Lasers, 49, 1303001(2022).
Get Citation
Copy Citation Text
Haoran Long, Yuan Gao, Hao Liu, Kaiyao Xin, Yali Yu, Juehan Yan, Zhongming Wei. Ultraviolet Photodetector Based on Wide Bandgap Two-Dimensional Semiconductor TlGaS2[J]. Chinese Journal of Lasers, 2023, 50(1): 0113015
Category: micro and nano optics
Received: Aug. 3, 2022
Accepted: Sep. 7, 2022
Published Online: Jan. 6, 2023
The Author Email: Yan Juehan (yjhyjg@semi.ac.cn), Wei Zhongming (zmwei@semi.ac.cn)