Acta Optica Sinica, Volume. 38, Issue 2, 0215002(2018)
Correlation Filter Tracking Based on Online Detection and Scale-Adaption
[2] Zhao G P, Shen Y P, Wang J Y. Adaptive feature fusion object tracking based on circulant structure with kernel[J]. Acta Optica Sinica, 37, 0815001(2017).
[4] Bolme D S, Beveridge J R, Draper B A et al. Visual object tracking using adaptive correlation filters. [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2544-2550(2010).
[5] Henriques J F, Caseiro R, Martins P et al. Exploiting the circulant structure of tracking-by-detection with kernels. [C]∥Proceedings of European Conference on Computer Vision, 702-715(2012).
[7] Danelljan M, Khan F S, Felsberg M et al. Adaptive color attributes for real-time visual tracking. [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1090-1097(2014).
[8] Qi Y, Zhang S, Qin L et al. Hedged deep tracking. [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 4303-4311(2016).
[9] Danelljan M, Hager G, Khan F S et al. Accurate scale estimation for robust visual tracking. [C]∥Proceedings of British Machine Vision Conference, 1-11(2014).
[10] Li Y, Zhu J K. A scale adaptive kernel correlation filter tracker with feature integration. [C]∥Proceedings of European Conference on Computer Vision, 254-265(2014).
[11] Ma C, Yang X K, Zhang C Y et al. Long-term correlation tracking. [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 5388-5396(2015).
[12] Zhang J, Ma S, Sclaroff S. MEEM: Robust tracking via multiple experts using entropy minimization. [C]∥Proceedings of European Conference on Computer Vision, 188-203(2014).
[15] Scholkopf B, Smola A J[M]. Learning with kernels: Support vector machines, regularization, optimization, and beyond, 405-423(2002).
[16] Wu Y, Lim J, Yang M H. Online object tracking: A benchmark. [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2411-2418(2013).
[17] Jia X, Lu H C, Yang M H. Visual tracking via adaptive structural local sparse appearance model. [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1822-1829(2012).
[18] Hare S, Saffari A. Torr P H S. Struck: Structured output tracking with kernels. [C]∥Proceedings of IEEE International Conference on Computer Vision, 263-270(2011).
[20] Bao C L, Wu Y, Ling H B et al. Real time robust L1 tracker using accelerated proximal gradient approach. [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1830-1837(2012).
[21] Luo H L, Du F F, Kong F S. Pixel feature-weighted scale-adaptive object tracking algorithm[J]. Journal on Communications, 36, 200-211(2015).
[22] Bertinetto L, Valmadre J, Golodetz S et al. Staple: Complementary learners for real-time tracking. [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1401-1409(2016).
[23] Ning J F, Yang J M, Jiang S J et al. Object tracking via dual linear structured SVM and explicit feature map. [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 4266-4274(2016).
Get Citation
Copy Citation Text
Yanchuan Wang, Hai Huang, Shaomei Li, Chao Gao. Correlation Filter Tracking Based on Online Detection and Scale-Adaption[J]. Acta Optica Sinica, 2018, 38(2): 0215002
Category: Machine Vision
Received: --
Accepted: --
Published Online: Aug. 30, 2018
The Author Email: Wang Yanchuan (87-chuan@163.com)