Laser & Optoelectronics Progress, Volume. 61, Issue 4, 0417002(2024)
Research on Combining Self-Attention and Convolution for Chest X-Ray Disease Classification
Fig. 5. X-ray annotated images of thoracic disease in the ChestX-ray14 dataset. (a) Atelectasis; (b) cardiomegaly; (c) effusion; (d) infiltration; (e) mass; (f) nodule; (g) pneumonia; (h) pneumothorax
Fig. 7. Results of ablation experiments. (a) Remove ODConv module; (b) remove AC-Block; (c) remove ECA module; (d) remove SAM
|
|
|
Get Citation
Copy Citation Text
Xin Guan, Jingjing Geng, Qiang Li. Research on Combining Self-Attention and Convolution for Chest X-Ray Disease Classification[J]. Laser & Optoelectronics Progress, 2024, 61(4): 0417002
Category: Medical Optics and Biotechnology
Received: Apr. 26, 2023
Accepted: May. 30, 2023
Published Online: Feb. 26, 2024
The Author Email: Qiang Li (liqiang@tju.edu.com)
CSTR:32186.14.LOP231180