Laser & Optoelectronics Progress, Volume. 61, Issue 4, 0417002(2024)

Research on Combining Self-Attention and Convolution for Chest X-Ray Disease Classification

Xin Guan, Jingjing Geng, and Qiang Li*
Author Affiliations
  • School of Microelectronics, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(10)
    Overall framework of DA-Net
    Workflow for ODConv
    EDPA mechanism
    Structure of the AC-Block
    X-ray annotated images of thoracic disease in the ChestX-ray14 dataset. (a) Atelectasis; (b) cardiomegaly; (c) effusion; (d) infiltration; (e) mass; (f) nodule; (g) pneumonia; (h) pneumothorax
    ROC curve and AUC value of 14 diseases on ChestX-ray14 dataset
    Results of ablation experiments. (a) Remove ODConv module; (b) remove AC-Block; (c) remove ECA module; (d) remove SAM
    • Table 1. Comparison of different thoracic disease classification algorithms on the ChestX-ray14 dataset

      View table

      Table 1. Comparison of different thoracic disease classification algorithms on the ChestX-ray14 dataset

      DiseaseAverage AUC
      Ma et al.15Zhang et al.23Guan et al.14Guan et al.16Chen et al.2Shao et al.24Wang et al.17Ours
      Mean0.7940.8020.8160.8220.8230.8240.8260.839
      Atelectasis0.7630.7850.7810.7850.7850.8160.7790.818
      Cardiomegaly0.8840.8760.8800.8990.8870.8660.8950.909
      Effusion0.8160.8630.8290.8350.8310.8700.8360.889
      Infiltration0.6790.6730.7020.6990.7030.6950.7100.716
      Mass0.8010.8040.8340.8380.8330.8350.8340.844
      Nodule0.7290.7300.7730.7750.7980.7680.7770.772
      Pneumonia0.7100.7420.7290.7380.7310.7550.7370.769
      Pneumothorax0.8370.8430.8570.8710.8810.8690.8780.888
      Consolidation0.7440.7850.7540.7630.7540.7950.7590.813
      Edema0.8410.8730.8500.8500.8490.8650.8550.899
      Emphysema0.8840.8580.9080.9240.9300.8940.9330.928
      Fibrosis0.8010.7750.8300.8310.8330.8140.8380.825
      Pleural thickening0.7540.7560.7780.7760.7820.7870.7910.793
      Hernia0.8760.8650.9170.9220.9210.9030.9380.885
    • Table 2. Experimental results for module combinations

      View table

      Table 2. Experimental results for module combinations

      NetworkAverage AUCParameter quantity /106FLOPs /109Training time /h
      Batch size is 16Batch size is 32
      ResNet500.76425.43.8216.104.00
      ResNet50+ODConv0.79827.93.9918.005.20
      ResNet50+ODConv+ECA0.81028.84.0118.605.50
      ResNet50+ODConv+EDPA0.81529.44.1218.705.50
      ResNet50+ODConv+EDPA+AC-Block0.83932.96.9422.007.10
    • Table 3. Experimental results of DA-Net on CheXpert dataset

      View table

      Table 3. Experimental results of DA-Net on CheXpert dataset

      StrategyMethodAtelectasisCardiomegalyConsolidationEdemaPleural effusionMean
      0ResNet500.8060.8330.9290.9130.9210.880
      DenseNet1210.7990.8320.9270.8970.9230.875
      Ours0.8180.8890.9410.9270.9300.901
      1ResNet500.8050.8550.9370.9100.9230.886
      DenseNet1210.7720.8440.9420.9060.9010.873
      Ours0.8270.8910.9480.9350.9390.908
    Tools

    Get Citation

    Copy Citation Text

    Xin Guan, Jingjing Geng, Qiang Li. Research on Combining Self-Attention and Convolution for Chest X-Ray Disease Classification[J]. Laser & Optoelectronics Progress, 2024, 61(4): 0417002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Apr. 26, 2023

    Accepted: May. 30, 2023

    Published Online: Feb. 26, 2024

    The Author Email: Qiang Li (liqiang@tju.edu.com)

    DOI:10.3788/LOP231180

    CSTR:32186.14.LOP231180

    Topics