Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 10, 1434(2023)
Optical flow estimation via fusing sequence image intensity correlation information
[6] BLACK M J, ANANDAN P. A framework for the robust estimation of optical flow[C], 231-236(1993).
[9] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C], 568-576(2014).
[13] YANG G S, RAMANAN D. Volumetric correspondence networks for optical flow[C], 72(2019).
[16] AMOS B, KOLTER J Z. OptNet: differentiable optimization as a layer in neural networks[C], 136-145(2017).
[17] AGRAWAL A, AMOS B, BARRATT S et al. Differentiable convex optimization layers[C], 858(2019).
[21] WANG J Y, ZHONG Y R, DAI Y C et al. Displacement-invariant matching cost learning for accurate optical flow estimation[C], 1276(2020).
Get Citation
Copy Citation Text
Tong AN, Di JIA, Jia-bao ZHANG, Peng CAI. Optical flow estimation via fusing sequence image intensity correlation information[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(10): 1434
Category: Research Articles
Received: Nov. 18, 2022
Accepted: --
Published Online: Oct. 25, 2023
The Author Email: Di JIA (1319423118@qq.com)