Laser & Optoelectronics Progress, Volume. 61, Issue 22, 2228004(2024)

Remote Sensing Image Detection Algorithm Based on Multi-receptive Field and Dynamic Feature Refinement

Jun Huang1,2、*, Ying Guo1,2, and Shu Yan1,2
Author Affiliations
  • 1Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • 2School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • show less
    Figures & Tables(15)
    Network structure of YOLOv7[16]
    Network structure of DF-YOLOv7
    Schematic diagram of detection layer transformation[16]
    Three structures of DRES module. (a) DRES_1; (b) DRES_2; (c) DRES_3
    MRELAN module
    EMA attention mechanism
    Feature refinement module DCR
    Comparison of mAP, parameters, and FPS between DF-YOLOv7 and various networks
    Comparison of heat maps between YOLOv7 and DF-YOLOv7. (a) Original image; (b) YOLOv7 heat image; (c) DF-YOLOv7 heat image; (d) YOLOv7 detection image; (e) DF-YOLOv7detection image
    Comparison of detection effect between YOLOv7 and DF-YOLOv7 on VisDrone images
    • Table 1. Ablation experiments of DRES module on the VisDrone verification set

      View table

      Table 1. Ablation experiments of DRES module on the VisDrone verification set

      ModelmAP0.5 /%Parameters /106GFLOPsFPS /(frame/s)
      LYS+DRES_151.217.8116.092.4
      LYS+DRES_251.517.5114.497.3
      LYS+SRES_351.317.5114.595.7
    • Table 2. Ablation of attention mechanisms on the VisDrone validation set

      View table

      Table 2. Ablation of attention mechanisms on the VisDrone validation set

      ModelmAP0.5 /%Parameters /106GFLOPs
      Base+CBAM

      51.5

      51.5

      17.5

      18.0

      114.4

      118.2

      +SE51.218.0118.2
      +SimAM51.518.0118.2
      +GAM51.418.1119.0
      +EMA51.718.0118.3
    • Table 3. Ablation experiments on the VisDrone validation set

      View table

      Table 3. Ablation experiments on the VisDrone validation set

      ModelmAP0.5 /%Parameters /106GFLOPsFPS /(frame/s)
      YOLOv749.037.3103.398.4
      +P250.237.1117.180.5
      +P2-P550.717.7115.3102.1
      +P2-P5+MRELAN51.718.0118.393.6
      +P2-P5+MRELAN+DCR52.118.3130.669.5
      +P2-P5+MRELAN+DCR+Wise IoU v352.318.3130.671.3
    • Table 4. Comparison of the effect of DF-YOLOv7 and other detectors on VisDrone verification set

      View table

      Table 4. Comparison of the effect of DF-YOLOv7 and other detectors on VisDrone verification set

      ModelPrecision /%mAP0.5/%Parameters /106FPS/(frame/s)
      PedePeopBicyCarVanTruckTricyAwnBusMotor
      Faster R-CNN21.415.66.751.729.519.013.17.731.420.721.741.2
      Cascade-RCNN3137.927.713.374.344.634.724.613.252.438.336.142.7
      HRDNet3256.745.127.782.651.343.037.618.858.956.447.862.43.7
      YOLOv43324.812.68.664.322.422.711.47.644.321.724.064.039.3
      YOLOv5s40.332.19.972.733.426.418.511.639.038.132.27.290.1
      MC-YOLOv53440.933.510.774.237.227.918.712.443.438.933.838.257.1
      YOLOv6m3534.525.75.675.342.531.322.014.048.337.033.634.856.0
      YOLOv757.448.224.584.850.245.638.518.663.259.249.037.298.0
      YOLOv842.732.012.479.144.036.528.115.957.044.939.311.1120.5
      UAV-YOLOv8s3656.844.918.885.850.839.033.319.764.356.247.010.352.6
      DF-YOLOv762.151.428.986.754.148.041.121.666.162.152.318.371.3
    • Table 5. Comparison of DF-YOLO and other algorithms on DOTA dataset

      View table

      Table 5. Comparison of DF-YOLO and other algorithms on DOTA dataset

      ModelPrecision
      R3Det37RSDet38SCRDet39ICN40RADet41YOLOv5YOLOv7Proposed
      mAP73.874.172.668.269.171.376.979.2
      PL89.590.190.081.479.589.389.889.7
      BD81.282.080.774.377.076.483.680.9
      BR50.553.852.147.748.147.350.258.1
      GTF66.168.568.470.365.861.266.778.5
      SV71.070.268.464.965.571.378.379.1
      LV78.778.760.367.874.474.083.183.9
      SH78.273.672.470.068.978.687.386.3
      TC90.891.390.990.889.789.890.790.7
      BC85.387.187.979.178.182.285.483.6
      ST84.284.786.978.375.081.485.785.7
      SBF61.864.365.053.649.960.965.567.2
      RA63.868.266.762.964.663.964.967.0
      HA68.266.266.367.066.165.267.578.1
      SP70.069.368.264.271.668.478.281.3
      HC67.263.765.250.262.260.176.077.3
    Tools

    Get Citation

    Copy Citation Text

    Jun Huang, Ying Guo, Shu Yan. Remote Sensing Image Detection Algorithm Based on Multi-receptive Field and Dynamic Feature Refinement[J]. Laser & Optoelectronics Progress, 2024, 61(22): 2228004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Mar. 20, 2024

    Accepted: Jun. 3, 2024

    Published Online: Nov. 21, 2024

    The Author Email:

    DOI:10.3788/LOP240932

    CSTR:32186.14.LOP240932

    Topics