Chinese Journal of Lasers, Volume. 50, Issue 7, 0701002(2023)
Simulation and Optimization of Heat Dissipation in Slab Laser Amplifier Based on Microchannel Heat Sink
[1] Sawicka-Chyla M, Divoky M, Slezak O et al. Numerical analysis of thermal effects in a concept of a cryogenically cooled Yb∶YAG multislab 10 J/100-Hz laser amplifier[J]. IEEE Journal of Quantum Electronics, 55, 5100518(2019).
[2] Mason P, Divoký M, Ertel K et al. Kilowatt average power 100 J-level diode pumped solid state laser[J]. Optica, 4, 438-439(2017).
[3] Hornung M, Liebetrau H, Keppler S et al. 54 J pulses with 18 nm bandwidth from a diode-pumped chirped-pulse amplification laser system[J]. Optics Letters, 41, 5413-5416(2016).
[4] Wang Y N, Zhou T J, Shang J L et al. Yb slab laser amplifier with a laser output of 7.13 kW, 2 times diffraction limit[J]. Laser&Optoelectronics Progress, 58, 1114007(2021).
[5] Lü K P, Liu Z Y, Yang X et al. Numerical research on microchannel cooling structure of high power solid-state lasers[J]. Chinese Journal of Lasers, 47, 0601010(2020).
[6] Xiao K B, Zheng J G, Jiang X Y et al. Temperature characteristics of high repetition rate water cooled Nd∶YAG active mirror amplifier[J]. Acta Physica Sinica, 70, 034203(2021).
[7] Wang J L, Li L, Shi X C et al. Modeling and optimization of cooling system for high power slab laser amplifiers[J]. Chinese Journal of Lasers, 37, 1553-1559(2010).
[8] Liu R, Gong F Q, Li X et al. Research on heat transfer characteristics of porous foam heat sink for all solid state thin disk lasers[J]. Acta Photonica Sinica, 49, 0414002(2020).
[9] Sun L C, Liu T H, Fu X et al. 1.57 times diffraction-limit high-energy laser based on a Nd∶YAG slab amplifier and an adaptive optics system[J]. Chinese Optics Letters, 17, 051403(2019).
[10] Wang X Q, Wang J F, Guo J T et al. Numerical simulation of thermo-optic effects in an Nd∶glass slab with low thermally induced wavefront distortion[J]. Photonics, 8, 91(2021).
[11] Zhu W T, He H J, Yu J et al. High energy Yb∶YAG regenerative amplifier[J]. Laser&Optoelectronics Progress, 58, 1736001(2021).
[12] Yang X H, Tan S C, Ding Y J et al. Flow and thermal modeling and optimization of micro/mini-channel heat sink[J]. Applied Thermal Engineering, 117, 289-296(2017).
[13] Muhammad A, Selvakumar D, Wu J. Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink[J]. International Journal of Heat and Mass Transfer, 150, 119265(2020).
[14] Liu G, Tang X J, Xu L J et al. Fluid-solid coupled heat transfer design numerical study for water cooling CCEPS laser[J]. Chinese Journal of Lasers, 41, 0402004(2014).
[15] Chi H, Baumgarten C, Jankowska E et al. Thermal behavior characterization of a kilowatt-power-level cryogenically cooled Yb∶YAG active mirror laser amplifier[J]. Journal of the Optical Society of America B, 36, 1084-1090(2019).
[16] Shen Y, Bo Y, Zong N et al. Experimental and theoretical investigation of pump laser induced thermal damage for polycrystalline ceramic and crystal Nd∶YAG[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 160-167(2015).
[17] Wei Y T, Zhang Y M, Tang C et al. Coupled analysis of temperature distribution in laser crystals pumped by repetitive pulses[J]. Chinese Journal of Lasers, 37, 912-916(2010).
[19] Huang W F, Li X C, Wang J F et al. Theoretical and experimental investigations on wavefront distortion and thermal-stress induced birefringence in a laser diode pumped helium gas-cooled multi-slab Nd∶glass laser amplifier[J]. Acta Physica Sinica, 64, 087801(2015).
[20] Ho C J, Wei L C, Li Z W. An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid[J]. Applied Thermal Engineering, 30, 96-103(2010).
[21] Hajmohammadi M R, Alipour P, Parsa H. Microfluidic effects on the heat transfer enhancement and optimal design of microchannels heat sinks[J]. International Journal of Heat and Mass Transfer, 126, 808-815(2018).
[22] Parlak Z. Optimal design of wavy microchannel and comparison of heat transfer characteristics with zigzag and straight geometries[J]. Heat and Mass Transfer, 54, 3317-3328(2018).
[23] Keepaiboon C, Thiangtham P, Mahian O et al. Pressure drop characteristics of R134a during flow boiling in a single rectangular micro-channel[J]. International Communications in Heat and Mass Transfer, 71, 245-253(2016).
[24] Yang X, Lü K P, Tang X J et al. Numerical simulation of the cooling capacity of heat sink with high heat flow density[J]. Laser&Infrared, 48, 52-55(2018).
Get Citation
Copy Citation Text
Haoran Wang, Jianlei Wang, Peili Li, Zhenxu Lu, Fuxiao Ma, Yunjie Ma, Jun Zhou, Weibiao Chen. Simulation and Optimization of Heat Dissipation in Slab Laser Amplifier Based on Microchannel Heat Sink[J]. Chinese Journal of Lasers, 2023, 50(7): 0701002
Category: laser devices and laser physics
Received: Jun. 17, 2022
Accepted: Aug. 2, 2022
Published Online: Mar. 6, 2023
The Author Email: Wang Jianlei (wangjl@siom.ac.cn), Li Peili (lipl@njupt.edu.cn)