Acta Optica Sinica, Volume. 43, Issue 15, 1514001(2023)
Performance Control Techniques of High-Power Linearly Polarized Yb-Doped Fiber Lasers
[1] Yang Y, Geng C, Li F et al. Combining module based on coherent polarization beam combining[J]. Applied Optics, 56, 2020-2028(2017).
[2] Zhu Y C, Li P X, Li C Y et al. Quantizing the coherent polarization beam combination from temporal, spatial, and spectral domains[J]. Proceedings of SPIE, 11849, 118490E(2021).
[3] Park E, Oh Y, Park J et al. Efficient second harmonic generation of a Yb fiber-based amplified stimulated emission source[J]. Optics Communications, 517, 128313(2022).
[4] Millot G, Wabnitz S. Nonlinear polarization effects in optical fibers: polarization attraction and modulation instability[J]. Journal of the Optical Society of America B, 31, 2754-2768(2014).
[5] Gapontsev V, Avdokhin A, Kadwani P et al. SM green fiber laser operating in CW and QCW regimes and producing over 550 W of average output power[J]. Proceedings of SPIE, 8964, 896407(2014).
[6] Tröbs M, Barke S, Theeg T et al. Differential phase-noise properties of a ytterbium-doped fiber amplifier for the Laser Interferometer Space Antenna[J]. Optics Letters, 35, 435-437(2010).
[7] Lin A X, Xiao Q R, Ni L et al. Domestic YDF active fiber realizes single fiber 20 kW laser output[J]. Chinese Journal of Lasers, 48, 0916003(2021).
[8] Jiao K R, Shu J A, Shen H A et al. Fabrication of kW-level chirped and tilted fiber Bragg gratings and filtering of stimulated Raman scattering in high-power CW oscillators[J]. High Power Laser Science and Engineering, 7, e31(2019).
[9] Jiang M, Ma P F, Huang L et al. kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme[J]. High Power Laser Science and Engineering, 5, e30(2017).
[10] Su R T, Tao R M, Wang X L et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Physics Letters, 14, 085102(2017).
[11] Platonov N, Yagodkin R, De La Cruz J et al. Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format[J]. Proceedings of SPIE, 10512, 105120E(2018).
[12] Wang Y S, Chang Z, Sun Y H et al. 47 GHz narrow linewidth linear polarized fiber amplifier injected by a simple fiber oscillator laser seed source[J]. Proceedings of SPIE, 10811, 108110B(2018).
[13] Wang Y S, Ma Y, Sun Y H et al. 2.62-kW, 30-GHz linearly polarized all-fiber laser with narrow linewidth and near-diffraction-limit beam quality[J]. Chinese Journal of Lasers, 46, 1215001(2019).
[14] Chang Z, Wang Y S, Sun Y H et al. 1.5 kW polarization-maintained Yb-doped amplifier with 13 GHz linewidth by suppressing the self-pulsing and stimulated Brillouin scattering[J]. Applied Optics, 58, 6419-6425(2019).
[15] Wang Y S, Ke W W, Peng W J et al. 3 kW, 0.2 nm narrow linewidth linearly polarized all-fiber laser based on a compact MOPA structure[J]. Laser Physics Letters, 17, 075101(2020).
[16] Huang L, Lai W C, Ma P F et al. Tapered Yb-doped fiber enabled monolithic high-power linearly polarized single-frequency laser[J]. Optics Letters, 45, 4001-4004(2020).
[17] Wang Y S, Feng Y J, Ma Y et al. 2.5 kW narrow linewidth linearly polarized all-fiber MOPA with cascaded phase-modulation to suppress SBS induced self-pulsing[J]. IEEE Photonics Journal, 12, 1502815(2020).
[18] Dixneuf C, Guiraud G, Bardin Y V et al. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm[J]. Optics Express, 28, 10960-10969(2020).
[19] Wang Y S, Sun Y H, Peng W J et al. 3.25 kW all-fiberized and polarization-maintained Yb-doped amplifier with a 20 GHz linewidth and near-diffraction-limited beam quality[J]. Applied Optics, 60, 6331-6336(2021).
[20] Ren S A, Ma P F, Li W et al. 3.96 kW all-fiberized linearly polarized and narrow linewidth fiber laser with near-diffraction-limited beam quality[J]. Nanomaterials, 12, 2541(2022).
[21] Wang Y S, Peng W J, Wang J et al. 4.45 kW narrow linewidth linear polarization near single mode all-fiber laser[J]. Chinese Journal of Lasers, 49, 1816003(2022).
[22] Ren S, Chen Y S, Ma P F et al. 4.5 kW, 0.33 nm near-single-mode narrow linewidth polarization-maintained fiber laser[J]. High Power Laser and Particle Beams, 34, 133(2022).
[23] Liu J H, Liu Y F, Xu T H. Analytical estimation of stress-induced birefringence in panda-type polarization-maintaining fibers[J]. IEEE Photonics Technology Letters, 32, 1507-1510(2020).
[24] Sears F M. Polarization-maintenance limits in polarization-maintaining fibers and measurements[J]. Journal of Lightwave Technology, 8, 684-690(1990).
[25] Chu P, Sammut R. Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber[J]. Journal of Lightwave Technology, 2, 650-662(1984).
[26] Takada K, Okamoto K, Sasaki Y et al. Ultimate limit of polarization cross talk in birefringent polarization-maintaining fibers[J]. Journal of the Optical Society of America A, 3, 1594-1603(1986).
[27] Tsubokawa M, Higashi T, Negishi Y. Mode couplings due to external forces distributed along a polarization-maintaining fiber: an evaluation[J]. Applied Optics, 27, 166-173(1988).
[28] Shi C X. Polarization coupling power in single-mode single-polarization optical fibers[J]. Optics Letters, 14, 1374-1376(1989).
[29] Shi C X, Okoshi T. Polarization cross talk and guided-mode coupling loss with broadband light sources in a single-polarization single-mode optical fiber[J]. Journal of the Optical Society of America A, 10, 583-589(1993).
[30] Rashleigh S C, Ulrich R, Burns W K et al. Polarization holding in birefringent single-mode fibers[J]. Optics Letters, 7, 40-42(1982).
[31] Lee K S, Cho J Y. Polarization-mode coupling in birefringent fiber gratings[J]. Journal of the Optical Society of America A, 19, 1621-1631(2002).
[32] Okamoto K, Hosaka T, Edahiro T. Stress analysis of optical fibers by a finite element method[J]. IEEE Journal of Quantum Electronics, 17, 2123-2129(1981).
[33] Takada K, Okamoto K, Noda J. Polarization mode coupling with a broadband source in birefringent polarization-maintaining fibers[J]. Journal of the Optical Society of America A, 2, 753-758(1985).
[34] Cancellieri G, Fantini P, Tilio M. Single-mode single-polarization fibers: effects of a residual polarization coupling[J]. Journal of the Optical Society of America A, 2, 1885-1890(1985).
[35] Yang F, Fang Z J, Pan Z Q et al. Orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings[J]. Optics Express, 20, 28839-28845(2012).
[36] Feldman S F, Weinberger D A, Winful H G. Polarization instability in a twisted birefringent optical fiber[J]. Journal of the Optical Society of America B, 10, 1191-1201(1993).
[37] El-Khozondar H J, Muller M S, El-Khozondar R J et al. Polarization rotation in twisted polarization maintaining fibers using a fixed reference frame[J]. Journal of Lightwave Technology, 27, 5590-5596(2009).
[38] Malykin G B, Pozdnyakova V I. Linear transformation of the polarization modes in coiled optical spun-fibers with strong unperturbed linear birefringence. I. nonresonant transformation[J]. Optics and Spectroscopy, 124, 360-372(2018).
[39] Przhiyalkovskiy Y V, Starostin N I, Morshnev S K et al. Polarization dynamics of light propagating in bent spun birefringent fiber[J]. Journal of Lightwave Technology, 38, 6879-6885(2020).
[40] Mousavi S L, Sabaeian M. Thermal stress-induced depolarization loss in conventional and panda-shaped photonic crystal fiber lasers[J]. Brazilian Journal of Physics, 46, 481-488(2016).
[41] Nakazawa M, Horiguchi T, Tokuda M et al. Measurement and analysis on polarization properties of backward Rayleigh scattering for single-mode optical fibers[J]. IEEE Journal of Quantum Electronics, 17, 2326-2334(1981).
[42] Kong F T, Stolen R H, Dong L A. Quantum-defect-assisted polarization mode coupling in a fiber amplifier[C], SM2Q.1(2016).
[43] Ahmed S U, Handerek V A, Rogers A J. Phase-matched polarization coupling in high-birefringence fibers through the optical Kerr effect[J]. Optics Letters, 17, 643-645(1992).
[44] Winful H G. Self-induced polarization changes in birefringent optical fibers[J]. Applied Physics Letters, 47, 213-215(1985).
[45] Crosignani B, Daino B, Di Porto P. Depolarization of light due to the optical Kerr effect in low-birefringence single-mode fibers[J]. Journal of the Optical Society of America B, 3, 1120-1123(1986).
[46] Winful H G. Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices[J]. Optics Letters, 11, 33-35(1986).
[47] Bononi A, Vannucci A, Orlandini A et al. Degree of polarization degradation due to cross-phase modulation and its impact on polarization-mode dispersion compensators[J]. Journal of Lightwave Technology, 21, 1903-1913(2003).
[48] Huang Y S, Xiao Q R, Li D et al. All-fiber linearly polarized laser oscillator by fiber coiling loss control[J]. Chinese Physics B, 27, 044201(2018).
[49] Shi W, Fang Q, Fan J L et al. High power monolithic linearly polarized narrow linewidth single mode fiber laser at 1064 nm[C](2016).
[50] Wang Q A, Rajan G, Wang P F et al. Polarization dependence of bend loss for a standard singlemode fiber[J]. Optics Express, 15, 4909-4920(2007).
[51] Huang L, Ma P F, Tao R M et al. 1.5 kW ytterbium-doped single-transverse-mode, linearly polarized monolithic fiber master oscillator power amplifier[J]. Applied Optics, 54, 2880-2884(2015).
[52] Yu C X, Shatrovoy O, Fan T Y et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier[J]. Optics Letters, 41, 5202-5205(2016).
[53] Ahmad R, Abedin K S, Yan M F et al. Polarization-maintained propagation of a 2200 μm2 effective-area higher-order-mode in a bent optical fiber[J]. Optics Express, 28, 8400-8406(2020).
[54] Wu Y L, Xiao Q R, Li D et al. Thermal induced polarization coupling in double-cladding linearly polarized fiber lasers[J]. Optics Communications, 512, 128036(2022).
[55] Qi Z N, Yin T C, Jiang X G et al. Narrow-linewidth high-efficiency single-frequency ytterbium-doped fiber laser with highly linear polarization at 1064 nm[J]. Applied Optics, 60, 2833-2838(2021).
[56] Lin C H, Li Q, Lee H P. Periodic microbending-induced core-to-cladding mode coupling in polarization-maintaining fibers[J]. Optics Letters, 28, 998-1000(2003).
[57] Arora P, Agarwal A, Gupta A S. Simple alignment technique for polarisation maintaining fibres[J]. Review of Scientific Instruments, 82, 125103(2011).
[58] Fu S N, Wang Y L, Cui J X et al. Panda type few-mode fiber capable of both mode profile and polarization maintenance[J]. Journal of Lightwave Technology, 36, 5780-5785(2018).
[59] Vanvincq O, Habert R, Cassez A et al. Polarization-maintaining and single-mode large mode area pixelated Bragg fiber[J]. Optics Letters, 45, 1946-1949(2020).
[60] Li H Y, Li X Y, Zhang Y et al. Design of high birefringence stress-induced polarization-maintaining fiber based on utilizing geometrical birefringence[J]. Optical Fiber Technology, 53, 102065(2019).
[61] Stolen R. Polarization effects in fiber Raman and Brillouin lasers[J]. IEEE Journal of Quantum Electronics, 15, 1157-1160(1979).
[62] Ran Y, Tao R M, Ma P F et al. 560 W all fiber and polarization-maintaining amplifier with narrow linewidth and near-diffraction-limited beam quality[J]. Applied Optics, 54, 7258-7263(2015).
[63] Ahsan A S, Agrawal G P. Vector modulation instability in birefringent graded-index multimode fibers[J]. Journal of the Optical Society of America B, 38, 201(2020).
[64] Wang Y S, Peng W J, Sun Y H et al. Effect of the number of longitudinal modes on spectral broadening in a high power fiber amplifier[J]. IEEE Photonics Technology Letters, 30, 1107-1110(2018).
[65] Huang Y S, Xiao Q R, Li D et al. 3 kW narrow linewidth high spectral density continuous wave fiber laser based on fiber Bragg grating[J]. Optics & Laser Technology, 133, 106538(2021).
[66] Zha C W, Peng W J, Wang X J et al. Self-pulsing in kilowatt level narrow-linewidth fiber amplifier with WNS phase-modulation[J]. Optics Express, 25, 19740-19751(2017).
[67] Meng D R, Lai W C, He X B et al. Kilowatt-level, mode-instability-free, all-fiber and polarization-maintained amplifier with spectral linewidth of 1.8 GHz[J]. Laser Physics, 29, 035103(2019).
[68] Goodno G D. Linewidth narrowing of a high power polarization maintaining fiber amplifier using nonlinear phase demodulation[C], SM4K.1(2021).
[69] Ma P F, Tao R M, Su R T et al. 189 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 24, 4187-4195(2016).
[70] Jauregui C, Limpert J, Tünnermann A. Derivation of Raman treshold formulas for CW double-clad fiber amplifiers[J]. Optics Express, 17, 8476-8490(2009).
[71] Dougherty D J, Kärtner F X, Haus H A et al. Measurement of the Raman gain spectrum of optical fibers[J]. Optics Letters, 20, 31-33(1995).
[72] Song J X, Wu H S, Ye J et al. High power linearly polarized Raman fiber laser with stable temporal output[J]. Photonic Sensors, 9, 43-48(2019).
[73] Ye J, Xu J M, Song J X et al. Power scalability of linearly polarized random fiber laser through polarization-rotation-based Raman gain manipulation[J]. Optics Express, 26, 22894-22903(2018).
[74] Song H Q, Yan D L, Wu W J et al. SRS suppression in multi-kW fiber lasers with a multiplexed CTFBG[J]. Optics Express, 29, 20535-20544(2021).
[75] Tian X, Zhao X F, Wang M et al. Effective suppression of stimulated Raman scattering in direct laser diode pumped 5 kilowatt fiber amplifier using chirped and tilted fiber Bragg gratings[J]. Laser Physics Letters, 17, 085104(2020).
[76] Lin W X, Desjardins-Carrière M, Sévigny B et al. Raman suppression within the gain fiber of high-power fiber lasers[J]. Applied Optics, 59, 9660-9666(2020).
[77] Wang Y S, Peng W J, Ke W W et al. Influence of seed instability on the stimulated Raman scattering of high power narrow linewidth fiber amplifier[J]. Optical and Quantum Electronics, 52, 193(2020).
[78] Liu F, Cao D L, Guo X A et al. Intermodal interference of LP01 and LP11 modes in panda fibers[J]. Chinese Optics Letters, 10, 60602-60605(2012).
[79] Schulze C, Brüning R, Schröter S et al. Mode coupling in few-mode fibers induced by mechanical stress[J]. Journal of Lightwave Technology, 33, 4488-4496(2015).
[80] Hansen K R, Alkeskjold T T, Broeng J et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Optics Express, 21, 1944-1971(2013).
[81] Zervas M N. Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers[J]. Optics Express, 27, 19019-19041(2019).
[82] Tao R M, Ma P F, Wang X L et al. Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers[J]. Journal of Optics, 18, 065501(2016).
[83] Kong F T, Xue J W, Stolen R H et al. Direct experimental observation of stimulated thermal Rayleigh scattering with polarization modes in a fiber amplifier[J]. Optica, 3, 975-978(2016).
[84] Xie L H, Zhang C, Liu Y et al. Experimental investigation of quasi-static mode degradation in a high power large mode area fiber amplifier[J]. Optics Express, 29, 7986-7997(2021).
[85] Ward B. Theory and modeling of photodarkening-induced quasi static degradation in fiber amplifiers[J]. Optics Express, 24, 3488-3501(2016).
[86] Naderi S, Dajani I, Madden T et al. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations[J]. Optics Express, 21, 16111-16129(2013).
[87] Schermer R T. Mode scalability in bent optical fibers[J]. Optics Express, 15, 15674-15701(2007).
[88] Zhai R D, Zhao H Y, Jia B N et al. Bending induced fiber damage resistance of panda polarization-maintaining fiber[J]. Proceedings of SPIE, 12169, 121699D(2022).
[89] Jauregui C, Stihler C, Tünnermann A et al. Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold[J]. Optics Express, 26, 10691-10704(2018).
Get Citation
Copy Citation Text
Ping Yan, Yulun Wu, Dan Li, Yi Wang, Qirong Xiao, Mali Gong. Performance Control Techniques of High-Power Linearly Polarized Yb-Doped Fiber Lasers[J]. Acta Optica Sinica, 2023, 43(15): 1514001
Category: Lasers and Laser Optics
Received: Mar. 29, 2023
Accepted: Jun. 12, 2023
Published Online: Aug. 3, 2023
The Author Email: Yan Ping (pyan@mail.tsinghua.edu.cn)