Acta Optica Sinica, Volume. 42, Issue 6, 0600002(2022)
Research Progress of Lidar in Cloud Detection
[1] Fu Y F. Research actuality of remote sensing on cloud precipitation and reflections on summer East Asian cloud precipitation[J]. Torrential Rain and Disasters, 37, 493-501(2018).
[2] Guo X L, Fu D H, Hu Z X. Progress in cloud physics, precipitation, and weather modification during 2008-2012[J]. Chinese Journal of Atmospheric Sciences, 37, 351-363(2013).
[3] Hua D X, Uchida M, Kobayashi T. Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere[J]. Optics Letters, 29, 1063-1065(2004).
[4] Liu Z Y, Kobayashi T. Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio[J]. Optical Review, 3, 47-52(1996).
[5] Sun D S, Zhong Z Q, Zhou J et al. Accuracy analysis of the Fabry-Perot etalon based Doppler wind lidar[J]. Optical Review, 12, 409-414(2005).
[6] Liu J Q, Chen W B, Hu Q Q. A wind direct-detection Doppler lidar based on a multi-beam Fizeau interferometer[J]. Chinese Journal of Atmospheric Sciences, 28, 762-770(2004).
[7] Di H G, Wang Q Y, Hua H B et al. Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data[J]. Remote Sensing, 10, 1753(2018).
[8] Chen S Y, Wang J Q, Chen H et al. Lidar cloud detection based on improved simple multiscale method[J]. Infrared and Laser Engineering, 49, 20200379(2020).
[9] Mao F Y, Gong W, Li J et al. Cloud detection and parameter retrieval based on improved differential zero-crossing method for Mie lidar[J]. Acta Optica Sinica, 30, 3097-3102(2010).
[11] Sassen K, Petrilla R L. Lidar depolarization from multiple scattering in marine stratus clouds[J]. Applied Optics, 25, 1450-1459(1986).
[12] Cho H M, Nasiri S L, Yang P. Application of CALIOP measurements to the evaluation of cloud phase derived from MODIS infrared channels[J]. Journal of Applied Meteorology and Climatology, 48, 2169-2180(2009).
[13] Lu X M, Jiang Y S. Statistical properties of clouds over Beijing derived from CALIPSO lidar measurements[J]. Chinese Journal of Geophysics, 54, 2487-2494(2011).
[14] Hu Y X, Liu Z Y, Winker D et al. Simple relation between lidar multiple scattering and depolarization for water clouds[J]. Optics Letters, 31, 1809-1811(2006).
[15] Hayman M, Spuler S, Morley B et al. Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers[J]. Optics Express, 20, 29553-29567(2012).
[16] Choi Y, Lindzen R, Ho C et al. Space observations of cold-cloud phase change[J]. PNAS, 107, 11211-11216(2010).
[17] Wang Y F, Gao F, Zhu C X et al. Raman lidar for atmospheric temperature, humidity and aerosols up to troposphere height[J]. Acta Optica Sinica, 35, 0328004(2015).
[18] Li Z Q. Impact of aerosols on the weather, climate and environment of China: an overview[J]. Transactions of Atmospheric Sciences, 43, 76-92(2020).
[19] Duan J, Mao J T. Progress in researches on interaction between aerosol and cloud[J]. Advances in Earth Science, 23, 252-261(2008).
[20] Veselovskii I, Kolgotin A, Griaznov V et al. Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding[J]. Applied Optics, 41, 3685-3699(2002).
[21] Müller D, Wandinger U, Ansmann A. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory[J]. Applied Optics, 38, 2346-2357(1999).
[22] Chaikovskii A P, Shcherbakov V N. Linear estimate of the parameters of the microstructure of an aerosol from spectral measurements of the characteristics of the scattered radiation[J]. Journal of Applied Spectroscopy, 42, 564-568(1985).
[23] Donovan D P, Carswell A I. Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements[J]. Applied Optics, 36, 9406-9424(1997).
[24] Veselovskii I, Kolgotin A, Griaznov V et al. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution[J]. Applied Optics, 43, 1180-1195(2004).
[25] Tan W S, Zhao G, Yu Y L et al. Method to retrieve cloud condensation nuclei number concentrations using lidar measurements[J]. Atmospheric Measurement Techniques, 12, 3825-3839(2019).
[26] Lü M, Wang Z E, Li Z Q et al. Retrieval of cloud condensation nuclei number concentration profiles from lidar extinction and backscatter data[J]. Journal of Geophysical Research: Atmospheres, 123, 6082-6098(2018).
[27] Shan K L, Liu X B, Bu L B et al. Joint inversion method of cirrus physical properties using both lidar and millimeter wave radar[J]. Infrared and Laser Engineering, 44, 2742-2746(2015).
[28] Wang Z E, Sassen K. Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part I: algorithm description and comparison with in situ data[J]. Journal of Applied Meteorology, 41, 218-229(2002).
[29] Wang Z E, Sassen K. Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part Ⅱ: midlatitude cirrus microphysical and radiative properties[J]. Journal of the Atmospheric Sciences, 59, 2291-2302(2002).
[30] Mao J T, Zheng G G. Discussions on some weather modification issues[J]. Journal of Applied Meteorological Science, 17, 643-646(2006).
[31] Behrendt A, Reichardt J. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator[J]. Applied Optics, 39, 1372-1378(2000).
[32] Wu D C, Wang Z E, Wechsler P et al. Airborne compact rotational Raman lidar for temperature measurement[J]. Optics Express, 24, A1210-A1223(2016).
[33] Su J. McCormick M P, Wu Y H, et al. Cloud temperature measurement using rotational Raman lidar[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 125, 45-50(2013).
[34] Liu B, Wang Z, Cai Y et al. Compact airborne Raman lidar for profiling aerosol, water vapor and clouds[J]. Optics Express, 22, 20613-20621(2014).
[35] Wu S H, Dai G Y, Song X Q et al. Observations of water vapor mixing ratio profile and flux in the Tibetan Plateau based on the lidar technique[J]. Atmospheric Measurement Techniques, 9, 1399-1413(2016).
[36] Liu F C, Yi F. Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere[J]. Applied Optics, 52, 6884-6895(2013).
[37] Wang Y F, Wang Q, Hua D X . Preliminary exploration of atmospheric water vapor, liquid water and ice water by ultraviolet Raman lidar[J]. Optics Express, 27, 36311-36328(2019).
[38] Träumner K, Handwerker J, Wieser A et al. A synergy approach to estimate properties of raindrop size distributions using a Doppler lidar and cloud radar[J]. Journal of Atmospheric and Oceanic Technology, 27, 1095-1100(2010).
[39] Wei T W, Xia H Y. Simultaneous wind and rainfall detection using coherent Doppler lidar[J]. Infrared and Laser Engineering, 49, 20200406(2020).
[40] Lottman B T, Frehlich R G. Hannon and S M, et al. Evaluation of vertical winds near and inside a cloud deck using coherent Doppler lidar[J]. Journal of Atmospheric and Oceanic Technology, 18, 1377-1386(2001).
Get Citation
Copy Citation Text
Huige Di, Dengxin Hua. Research Progress of Lidar in Cloud Detection[J]. Acta Optica Sinica, 2022, 42(6): 0600002
Category: Reviews
Received: Jan. 10, 2022
Accepted: Jan. 31, 2022
Published Online: Mar. 8, 2022
The Author Email: Hua Dengxin (dengxinhua@xaut.edu.cn)