Laser Journal, Volume. 46, Issue 3, 65(2025)
A DRM-YOLOv8n algorithm for PCB defect detection
[6] [6] WEI W. Small object detection based on deep learning[C]//2020 IEEE Int-ernational Conference on Power, Intelligent Computing and Systems (ICPICS). IEEE, 2020: 938-943.
[9] [9] Redmon J, Divvala S, Uirshick R, et al. You only look once: unifie-d, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogition, Las Vegas, 2016: 779-788.
[10] [10] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020.
[12] [12] Shao G F, Zheng Y Y, Wu J Y, et al. An Improved YOLOv3 Network for PCB Defect Detection[C]//2021 China Automation Congress (CAC), Beijing, China, 2021: 1819-1823.
[16] [16] Zhang T W, Zhang X L, Ke X. Quad- CPN: a novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13(14): 2771.
[17] [17] Zheng Z, Wang P, Liu W, et al. Distance-IoU loss: faster and better le-arning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[18] [18] Dai J F, Qi H Z, Xiong Y W, et al. Deformable convolutional networks[C]//2017 IEEE International Confere-nce on Computer Vision. 2017: 764-77.
Get Citation
Copy Citation Text
ZHOU Jing, HUANG Liwen, TANG Xin, WANG Bosi. A DRM-YOLOv8n algorithm for PCB defect detection[J]. Laser Journal, 2025, 46(3): 65
Category:
Received: Sep. 18, 2024
Accepted: Jun. 12, 2025
Published Online: Jun. 12, 2025
The Author Email: HUANG Liwen (cqhlw@cqut.edu.cn)