Opto-Electronic Engineering, Volume. 51, Issue 6, 240042-1(2024)
Image quality optimization of line-focused spectral domain optical coherence tomography with subsection dispersion compensation
[1] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[2] Fujimoto J G. Optical coherence tomography for ultrahigh resolution in vivo imaging[J]. Nat Biotechnol, 21, 1361-1367(2003).
[3] Liu Y F, Su Y, Yao X T et al. An optimization method of image processing for OCT non-invasive blood glucose detection[J]. Laser Technol, 47, 178-184(2023).
[4] Farazdaghi M K, Ebrahimi K B. Role of the choroid in age-related macular degeneration: a current review[J]. J Ophthalmic Vis Res, 14, 78-87(2019).
[5] Choi W, Moult E M, Waheed N K et al. Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy[J]. Ophthalmology, 122, 2532-2544(2015).
[6] Potsaid B, Baumann B, Huang D et al. Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100, 000 to 400, 000 axial scans per second[J]. Opt Express, 18, 20029-20048(2010).
[7] Li Y Y, Fan J Y, Jiang T L et al. Review of the development of optical coherence tomography imaging navigation technology in ophthalmic surgery[J]. Opto-Electron Eng, 50, 220027(2023).
[8] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Opt Commun, 117, 43-48(1995).
[9] de Boer J F, Cense B, Park B H et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J]. Opt Lett, 28, 2067-2069(2003).
[10] Choma M A, Sarunic M V, Yang C et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Opt Express, 11, 2183-2189(2003).
[11] An L, Li P, Shen T T et al. High speed spectral domain optical coherence tomography for retinal imaging at 500, 000 A-lines per second[J]. Biomed Opt Express, 2, 2770-2783(2011).
[12] Kocaoglu O P, Turner T L, Liu Z L et al. Adaptive optics optical coherence tomography at 1 MHz[J]. Biomed Opt Express, 5, 4186-4200(2014).
[13] Choi D H, Hiro-Oka H, Shimizu K et al. Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second[J]. Biomed Opt Express, 3, 3067-3086(2012).
[14] Wang R K, An L. Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate[J]. J Biomed Opt, 16, 050503(2011).
[15] Seong D, Jeon D, Wijesinghe R E et al. Ultrahigh-speed spectral-domain optical coherence tomography up to 1-MHz a-scan rate using space–time-division multiplexing[J]. IEEE Trans Instrum Meas, 70, 4504108(2021).
[16] Zuluaga A F, Richards-Kortum R. Spatially resolved spectral interferometry for determination of subsurface structure[J]. Opt Lett, 24, 519-521(1999).
[17] Han L, Hosseiaee Z, Tan B et al. High resolution line-field SD-OCT with 2.5 kHz frame rate for cellular resolution imaging of biological tissue[J]. Proc SPIE, 10867, 108672X(2019).
[18] Lawman S, Mason S, Kaye S B et al. Accurate in vivo bowman's thickness measurement using mirau ultrahigh axial resolution line field optical coherence tomography[J]. Transl Vis Sci Technol, 11, 6(2022).
[19] Shen Y, Chen Z Y, Qiu J R et al. Research progress on parallel spectral domain optical coherence tomography technology[J]. Chin J Lasers, 45, 0207004(2018).
[20] Nakamura Y, Makita S, Yamanari M et al. High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography[J]. Opt Express, 15, 7103-7116(2007).
[21] Grajciar B, Lehareinger Y, Fercher A F et al. High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512 000 A-scan/s[J]. Opt Express, 18, 21841-21850(2010).
[22] Drexler W, Fujimoto J G[M]. Optical Coherence Tomography: Technology and Applications(2008).
[23] Hitzenberger C K, Baumgartner A, Drexler W et al. Dispersion effects in partial coherence interferometry: implications for intraocular ranging[J]. J Biomed Opt, 4, 144-151(1999).
[24] Huang B J, Bu P, Wang X Z et al. Optical coherence tomography based on depth resolved dispersion compensation[J]. Acta Opt Sin, 32, 0217002(2012).
[25] Marks D L, Oldenburg A L, Reynolds J J et al. Autofocus algorithm for dispersion correction in optical coherence tomography[J]. Appl Opt, 42, 3038-3046(2003).
[26] Wojtkowski M, Srinivasan V J, Ko T H et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation[J]. Opt Express, 12, 2404-2422(2004).
[27] Diddams S, Diels J C. Dispersion measurements with white-light interferometry[J]. J Opt Soc Am B, 13, 1120-1129(1996).
[28] Wang K, Ding Z H. Spectral calibration in spectral domain optical coherence tomography[J]. Chin Opt Lett, 6, 902-904(2008).
[29] Pan L H, Li Z L, Wang X Z et al. Depth-dependent dispersion compensation for optical coherence tomography[J]. Acta Opt Sin, 37, 0511002(2017).
[30] Liu Y H, Liang Y M, Mu G G et al. Deconvolution methods for image deblurring in optical coherence tomography[J]. J Opt Soc Am A, 26, 72-77(2009).
Get Citation
Copy Citation Text
Jianwen Yang, Jiangjie Huang, Yi He, Guohua Shi. Image quality optimization of line-focused spectral domain optical coherence tomography with subsection dispersion compensation[J]. Opto-Electronic Engineering, 2024, 51(6): 240042-1
Category:
Received: Feb. 28, 2024
Accepted: May. 7, 2024
Published Online: Oct. 21, 2024
The Author Email: Guohua Shi (史国华)