Acta Optica Sinica (Online), Volume. 2, Issue 11, 1106001(2025)

Recent Progress in High-Repetition-Rate Fiber-Based Optical Frequency Comb Technology (Invited)

Zixuan Ding, Guorui Wang, Xinxin Zhou, and Fei Xu*
Author Affiliations
  • College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, Jiangsu , China
  • show less
    Figures & Tables(16)
    Schematic diagrams of optical frequency comb. (a) Time domain; (b) frequency domain
    Generation of fiber-based optical frequency comb. (a) Temporal features of mode-locked laser; (b) schematic diagram of modulation instability gain spectrum in fiber; (c) spectra in the nonlinear optical parametric oscillation process
    Technologies of high-repetition-rate fiber optical frequency combs
    Short-cavity mode-locked fiber lasers. (a) NPR-mode-locked ring short cavity fiber laser[45]; (b) SESAM-mode-locked ring short cavity fiber laser[46]; (c) schematic diagram of linear FP short cavity[47]; (d) linear short cavity mode-locked fiber laser[47]; (e) output of linear short-cavity mode-locked fiber laser with repetition rate of 21 GHz[50]; (f) conceptual diagram of cavity-induced soliton-trapping in linear short-cavity mode-locked fiber laser[58]
    Active mode-locked fiber laser. (a) External-modulated electro-optic frequency comb[82]; (b) intra-cavity-modulated electro-optic frequency comb[86]
    Harmonic mode-locked fiber lasers. (a) NPR-based harmonic mode-locked fiber laser[97]; (b) harmonic mode-locked fiber laser with high SMSR[99]; (c) harmonic mode-locked fiber laser with dispersion and nonlinearity management and (d) corresponding mode-locked pulse output with repetition rate of 22 GHz[98]; (e) harmonic mode-locked fiber laser with acoustic field enhancement from photonic crystal fiber[101]; (f) harmonic mode-locked fiber laser with acoustic field enhancement from tapered single mode fiber[104]
    Dissipative-four-wave-mixing fiber optical frequency comb. (a) Fiber MZI filter[113]; (b) fiber FP filter[114]; (c) VIPA filter[116]; (d) hybrid plasmonic microfiber resonator[117]; (e) graphene-integrated microfiber resonator[118]; (f) high-birefringence-guided microfiber resonator[120]
    Brillouin-driven fiber optical frequency comb. (a) Generation mechanism of Brillouin-driven fiber optical frequency comb[121]; (b) Brillouin-driven Kerr soliton fiber optical frequency comb[121]; (c) octave-spanning Brillouin-driven fiber optical frequency comb[122]; (d) generation and dynamics of Brillouin-driven fiber optical frequency comb in non-reciprocal cavity[123]
    Micro-resonator-driven fiber optical frequency comb. (a) Filter-driven four-wave-mixing[125]; (b) repetition-rate-tunable micro-resonator driven fiber optical frequency comb[126]; (c) soliton optical frequency comb in micro-resonator driven composite cavity[133]; (d) self-starting of soliton optical frequency comb in micro-resonator driven composite cavity[134]
    Kerr optical frequency comb based on fiber FP resonator. (a) Fiber FP resonator Kerr optical frequency comb pumped by electro-optic frequency comb[135]; (b) fiber FP resonator optical frequency comb pumped by CW laser [138]; (c) fiber Kerr optical frequency comb based on FP resonator nested Chimera cavity scheme[140]; (d) dual optical frequency comb generated in single fiber FP cavity[143]
    Precision processing application of high-repetition-rate fiber optical frequency comb. (a) Laser processing of human dentine by traditional 1 kHz regime and (b) 1.7 GHz high-repetition-rate regime under the same average power and scanning speed[145]; (c) MOPA high-power laser system based on linear-cavity high-repetition-rate fiber laser seed source[65]
    Metrology applications of high-repetition-rate fiber optical frequency comb. (a) Dependence of dual-comb-ranging accuracy on repetition rate difference[156]; (b) ranging system with 10 GHz electro-optic frequency comb[157]; (c) ranging system with high-repetition-rate hybrid dual optical frequency combs[158]; (d) fiber Bragg grating demodulation system based on high-repetition-rate single-cavity fiber dual optical frequency combs[161]
    Other applications of high-repetition-rate fiber optical frequency comb. (a) 200 GHz Brillouin-driven fiber optical frequency comb for generation of low phase-noise microwave signal[164]; (b) astro comb system based on high-repetition-rate fiber laser[167]
    • Table 1. Parameter summary of short-cavity mode-locked fiber laser

      View table
      View in Article

      Table 1. Parameter summary of short-cavity mode-locked fiber laser

      Cavity structurefrep /GHzCentral wavelength /nmComb bandwidth /nmPulse width /psMode-locking methodRef.
      Loop1.01030230.064NPR44
      Loop1.2108770.50.038NPR59
      Loop1.1210301.141.37SESAM46
      Loop1.151042.218.80.194SESAM60
      Linear1.2899.53.2SESAM61
      Linear1.55903.744.5SESAM62
      Linear12.51047.50.91.9SESAM47
      Linear1.210573.34.9SESAM63
      Linear4.951058.712.6SESAM64
      Linear1.39106440.8SESAM65
      Linear1.231066.33.76.4SESAM66
      Linear1215350.9532.3SESAM67
      Linear1.5715352.3SESAM68
      Linear4.9515610.693.54SESAM53
      Linear9.6715623.20.865CNT51
      Linear12.5156330.854SESAM69
      Linear5.1815634.70.68CNT48
      Linear19.4515634.20.79CNT49
      Linear4.91563.94.30.595SESAM70
      Linear211566.52.6SESAM50
      Linear3.191586.14.10.639SESAM71
      Linear1.0131608.813.60.229SESAM72
      Linear1.598161070.39SESAM54
      Linear11.319155.840.163SESAM73
      Linear2.819460.7SESAM74
      Linear1.6195212.27.2SESAM75
      Linear1.148831964.922.20.182SESAM76
      Linear4.31968.50.8411.07SESAM77
    • Table 2. Typical parameter summary of active and harmonic mode-locked fiber laser

      View table
      View in Article

      Table 2. Typical parameter summary of active and harmonic mode-locked fiber laser

      Methodfrep /GHzHarmonic orderSMSR /dBCentral wavelength /nmComb bandwidth /nmPulse width /psRef.
      Active mode-locking6415431.123.383
      1015503.240.81684
      1011000.851.185
      1015604.60.58386
      Harmonic mode-locking2.2111336.5159810.41.3494
      49135.61563.283.350.93696
      22.292841155016.51.797
      22.1322192401555.43.8220.6798
      2.12211265015594.30.83102
      2.5156010501.1999
    • Table 3. Parameter summary of high-repetition-rate nonlinear fiber optical frequency combs

      View table
      View in Article

      Table 3. Parameter summary of high-repetition-rate nonlinear fiber optical frequency combs

      MethodDevicefrep /GHzCentral wavelength /nmFull-spectral bandwidth /nmPulse width /psRef.
      DFWMFP filter + HNLF1151555101.6107
      Sampled FBG + HNLF991555252.27109
      FBG + HNLF100‒16015501810110
      MZI7‒110015503‒150.55‒10.1112
      MZI3.22‒1080155063.8‒5.35113
      FP filter + HNLF10015591910114
      Hybrid plasmonic MKR54‒1441545‒15668‒346.6117
      Cu-based graphene MKR57.81560.8103.4118
      FP filter and VIPA1001559.6102.73116
      301560.073.86
      Fiber Lyot filter126158915<2.6115
      HBF + MKR34481550> 27.8<0.29120
      Microsphere resonator1541558.2102.9119
      Brillouin-drivenCW laser + HNLF37.5‒3001550120‒1400.54‒2.9121
      Micro-laser + HNLF5015581100.379122
      CW laser + HNLF39.971551.7> 17123
      EOM + HNLF801551.1400.913124
      Micro-cavity-drivenDoped SiO2 micro-ring200.81550> 602.3125
      Si micro-ring2501546230.875127
      Si micro-ring1101550> 152.6128
      Si3N4 micro-ring2301558.7880132
      Doped SiO2 micro-ring49‒22501567.5180130
      Doped SiO2 micro-ring49‒7351550300.656126
      Doped SiO2 micro-ring49‒3001550< 20131
      Doped SiO2 micro-ring48.97155260< 5133
      Doped SiO2 micro-ring48.91543> 60< 10134
      Fiber FP-cavity Kerr combSingle mode fiber FP9.771559> 400.394135
      HNLF FP0.9451557> 1300.22138
      HNLF FP10.181557> 600.37140
      HNLF FP10.079155020139
      Zero-dispersion HNLF FP10.4151550710137
      HNLF FP1.0011549.97800.132143
      1550.044900.131
      Single mode fiber FP101562.5> 1000.064142
      HNLF FP1.839315502552.58144
      FP10.0871552.4400.3141
    Tools

    Get Citation

    Copy Citation Text

    Zixuan Ding, Guorui Wang, Xinxin Zhou, Fei Xu. Recent Progress in High-Repetition-Rate Fiber-Based Optical Frequency Comb Technology (Invited)[J]. Acta Optica Sinica (Online), 2025, 2(11): 1106001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser and Laser Physics

    Received: Feb. 11, 2025

    Accepted: Mar. 24, 2025

    Published Online: May. 26, 2025

    The Author Email: Fei Xu (feixu@nju.edu.cn)

    DOI:10.3788/AOSOL250438

    CSTR:32394.14.AOSOL250438

    Topics