Chinese Optics, Volume. 15, Issue 2, 251(2022)
Photonics generation of broadband millimeter wave noise signals with high excess noise ratios
[1] WANG L Y, LI Y Q, CAI R. Optical path slanting coupling noise suppression in space laser interferometer[J]. Optics and Precision Engineering, 29, 1491-1498(2021).
[2] LI L, WANG L Q, HUANG Y, . Research on noise characteristics and noise reduction design of photoelectric detection system[J]. Optics and Precision Engineering, 28, 2674-2683(2020).
[3] ZHAO J L, MA Y, LI S.. Hybrid Noise Removal method for 3D medical image[J]. Liquid crystal and Display, 30, 340-346(2015).
[4] [4] HSIAO H F, TU C H, CHANG D C, et al.. Noise figure verification using coldSource Yfact technique f amplifier downconverted mixer[C]. 2014 AsiaPacific Microwave Conference, IEEE, 2014: 901903.
[5] [5] PARASHARE C R, KANGASLAHTI P P, BROWN S T, et al. . Noise sources f internal calibration of millimeterwave radiometers[C]. 2014 13th Specialist Meeting on Microwave Radiometry Remote Sensing of the Environment (Micrad), IEEE, 2014: 157160.
[6] SHAHRIAR C, PAN M L, LICHTMAN M, et al. PHY-layer resiliency in OFDM communications: a tutorial[J]. IEEE Communications Surveys & Tutorials, 17, 292-314(2015).
[7] [7] PAIK H, SASTRY N N, SANTIPRABHA I. Effectiveness of noise jamming with White Gaussian Noise phase noise in amplitude comparison monopulse radar receivers[C]. 2014 IEEE International Conference on Electronics, IEEE, 2014: 15.
[8] YU H W, LI D B, SUN X J, . Quantum Random number Gaussian Noise signal generator[J]. Optics and Precision Engineering, 27, 1492-1499(2019).
[9] BELAND P, LABONTE S, ROY L, et al. A novel on-wafer resistive noise source[J]. IEEE Microwave and Guided Wave Letters, 9, 227-229(1999).
[10] LIANG W J, GAO Q L. A WR28 cryogenic standard noise source[J]. Science Technology and Engineering, 11, 7672-7676,7681(2011).
[11] PAWAR N Y, GANGAL S A, SHALIGRAM A D, et al. Development of X-band microwave noise source using neon gas fluorescent gas discharge tube[J]. AIP Conference Proceedings, 2335, 050002(2021).
[12] CAO Y T. Avalanche noise source of Schottky barrier diode in the 3 mm band[J]. Journal of Infrared and Millimeter Waves, 9, 317-320(1990).
[13] GHANEM H, GONÇALVES J C A, CHEVALIER P, et al. Modeling and analysis of a broadband schottky diode noise source up to 325 GHz based on 55-nm SiGe BiCMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 68, 2268-2277(2020).
[14] LIU Y D, DU L, SUN P, . The effect of electrostatic discharge on the
[15] [15] HUGGARD P G, AZCONA L, ELLISON B N, et al.. Application of 1.55 µm photomixers as local oscillats & noise sources at millimetre wavelengths[C]. Infrared Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 12th International Conference on Terahertz Electronics, IEEE, 2004: 771772.
[16] SONG H J, SHIMIZU N, KUKUTSU N, et al. Microwave photonic noise source from microwave to sub-terahertz wave bands and its applications to noise characterization[J]. IEEE Transactions on Microwave Theory and Techniques, 56, 2989-2997(2008).
[17] [17] ZHAO R K, YAO T M, DUAN X D, et al.. Design of a 0.1~18GHz highpower broadb noise source[C]. 2020 International Conference on Microwave Millimeter Wave Technology (ICMMT), IEEE, 2020: 13.
[18] [18] EHSAN N, PIEPMEIER J, SOLLY M, et al.. A robust waveguide millimeterwave noise source[C]. 2015 European Microwave Conference (EuMC), IEEE, 2015: 853856.
[19] [19] GONCALVES J C A, QUEMERAIS T, GLIA D, et al.. A 130 to 170 GHz integrated noise source based on avalanche silicon Schottky diode in BiCMOS 55 nm f insitu noise acterization[C]. 2017 International Conference of Microelectronic Test Structures (ICMTS), IEEE, 2017: 13.
[20] GONÇALVES J C A, GHANEM H, BOUVOT S, et al. Millimeter-wave noise source development on SiGe BiCMOS 55-nm technology for applications up to 260 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 67, 3732-3742(2019).
[21] ALIMENTI F, SIMONCINI G, BROZZETTI G, et al. Millimeter-wave avalanche noise sources based on p-i-n diodes in 130 nm SiGe BiCMOS technology: device characterization and CAD modeling[J]. IEEE Access, 8, 178976-178990(2020).
[22] COEN C T, FROUNCHI M, LOURENCO N E, et al. A 60-GHz SiGe radiometer calibration switch utilizing a coupled avalanche noise source[J]. IEEE Microwave and Wireless Components Letters, 30, 417-420(2020).
[23] VIDAL B. Broadband photonic microwave noise sources[J]. IEEE Photonics Technology Letters, 32, 592-594(2020).
[24] [24] CHAO E F, XIONG B, SUN CH ZH, et al.. Comprehensive design method of MUTCPD f terahertz applications[C]. 2020 Asia Communications Photonics Conference(ACP) International Conference on Infmation Photonics Optical Communications (IPOC). IEEE, 2020: 13.
Get Citation
Copy Citation Text
Hai-bi HUANG, Wen-jie LIU, Yue-hui SUN, An-bang WANG, Yu-wen QIN, Yun-cai WANG. Photonics generation of broadband millimeter wave noise signals with high excess noise ratios[J]. Chinese Optics, 2022, 15(2): 251
Category: Original Article
Received: Aug. 13, 2021
Accepted: Dec. 10, 2021
Published Online: Mar. 28, 2022
The Author Email: