Chinese Journal of Lasers, Volume. 49, Issue 2, 0202020(2022)

Effects of Heat Source Angle on Weld Formation and Porosity Defects of Laser-MIG Hybrid Welding of 6A01 Aluminum Alloy

Xiaohui Han1, Zhiyi Zhang1, Guolong Ma1, Laijun Wu2,3, Xiaoguo Song2,3, Houqin Wang2, and Caiwang Tan2,3、*
Author Affiliations
  • 1CRRC Qingdao Sifang Co., LTD., Qingdao, Shandong 266111, China
  • 2State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • 3Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
  • show less
    Figures & Tables(14)
    Aluminum extrusions. (a) Appearances; (b) welds
    Laser-MIG hybrid welding processing
    Angle settings of the heat source in six tests. (a) Test 1; (b) test 2; (c) test 3; (d) test 4; (e) test 5; (f) test 6
    Weld appearances and cross-sections under different angle settings. (a) Test 1, α=82.5°,β=120°;(b) test 2, α=82.5°,β=140°;(c) test 3, α=70°,β=140°;(d) test 4, α=97.5°,β=120°;(e) test 5, α=97.5°,β=140°; (f) test 6, α=110°,β=140°
    Weld depth and width under different angle settings
    Steps for calculating weld porosity. (a) Cross-sections; (b) gray level image; (c) threshold segmentation
    Cross-sections and binary images of welds under different angle settings. (a) Test 1, α=82.5°,β=120°;(b) test 2, α=82.5°,β=140°;(c) test 3, α=70°,β=140°;(d) test 4, α=97.5°,β=120°;(e) test 5, α=97.5°,β= 140°;(f) test 6, α=110°,β=140°
    Porosity of welds under different angle settings
    Electricity signals, metal transfer and weld pool of welds under different angle settings. (a) Test 1, α=82.5°,β=120°;(b) test 2, α=82.5°,β=140°;(c) test 2, α=70°,β=140°;(d) test 4, α=97.5°,β=120°;(e) test 5, α= 97.5°,β=140°;(f) test 6, α=110°,β=140°
    Fluent finite element simulation analysis modeling process. (a) Welding model; (b) meshing; (c) droplet settings
    Simulation results of the cross-sections and weld pool of welds under different angle settings. (a) Test 1, α=82.5°,β=120°;(b) test 2, α=82.5°,β=140°;(c) test 3, α=70°,β=140°;(d) test 4, α=97.5°,β=120°; (e) test 5, α=97.5°,β=140°;(f) test 6, α=110°,β=140°
    Comparison of simulation results and measured results of the weld depth and width. (a) Weld width; (b) weld depth
    • Table 1. Chemical composition of used materials (mass fraction, %)

      View table

      Table 1. Chemical composition of used materials (mass fraction, %)

      MaterialsSiMnMgZnFeCrTiAl
      6A010.600.400.680.100.250.200.08Balance
      ER53560.250.205.500.100.400.200.20Balance
    • Table 2. Processing parameters of laser-MIG hybrid welding

      View table

      Table 2. Processing parameters of laser-MIG hybrid welding

      Welding parametersValue
      Laser power /kW4
      Welding speed /(m·min-1)1.8
      Welding current /A180
      Welding voltage /V23
      Wire feeding speed /(m·min-1)8.1
      Distance between laser and arc /mm2
      Protect gas flow rate /(L·min-1)20
    Tools

    Get Citation

    Copy Citation Text

    Xiaohui Han, Zhiyi Zhang, Guolong Ma, Laijun Wu, Xiaoguo Song, Houqin Wang, Caiwang Tan. Effects of Heat Source Angle on Weld Formation and Porosity Defects of Laser-MIG Hybrid Welding of 6A01 Aluminum Alloy[J]. Chinese Journal of Lasers, 2022, 49(2): 0202020

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Jun. 15, 2021

    Accepted: Aug. 10, 2021

    Published Online: Jan. 11, 2022

    The Author Email: Tan Caiwang (tancaiwang@hitwh.edu.cn)

    DOI:10.3788/CJL202249.0202020

    Topics