Particle acceleration using lasers[1] has been studied for about four decades and, after the development of chirped pulse amplification[2], laser intensity has increased up to 10
High Power Laser Science and Engineering, Volume. 11, Issue 2, 02000e20(2023)
Feasibility study of laser-driven neutron sources for pharmaceutical applications Editors' Pick
We predict the production yield of a medical radioisotope
1 Introduction
Particle acceleration using lasers[1] has been studied for about four decades and, after the development of chirped pulse amplification[2], laser intensity has increased up to 10
One of the expected applications using LDNSs is the production of medical radioisotopes by a compact laser system inside of hospitals. Radioisotopes, which may radiate a
Figure 1.Partial nuclear chart around Zn and nuclear reactions with neutrons on a natural Zn target. Cu,
Cu and
Cu are produced by (n, p) reactions with high-energy neutrons on
Zn,
Zn and
Zn, respectively.
Cu,
Cu and
Cu
are produced by (n, 2n) reactions on
Zn,
Zn and
Zn, respectively.
Cu and
Cu
are generated by (n, pn) reactions from
Zn and
Zn, respectively. High-energy neutrons could produce
Ni by the
Zn(n,
)
Ni reaction. Neutron capture also occurs.
LDNSs provide primary fast neutrons in the energy range of 1
Sign up for High Power Laser Science and Engineering TOC Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
2 Experimental methods
The neutron irradiation experiment was carried out using the petawatt laser for fast ignition experiments (LFEX) laser system at the Institute of Laser Engineering (ILE) at Osaka University[38]. To generate and accelerate ions we focused four laser pulses provided from LFEX on a target with an intensity of approximately 1.5
Figure 2.Experimental setup for the laser shot to generate neutrons. The laser is focused on the CD foil target. The Be neutron converter is placed 4 mm downstream of the CD foil. Behind the Be target, the Zn target was set in the hole at the center of the front surface.
Unstable isotopes and isomers were produced via nuclear reactions of the neutrons and stable isotopes of Zn. Eleven minutes after the laser shot, the Zn target was moved from the target chamber to obtain the
|
3 Experimental results
Figure 3 shows the energy spectrum of the generated neutrons, which was measured using the TOF method with the scintillation detector located 57
Figure 3.Fast neutron spectrum obtained from the TOF measurement. The neutron energies reached 17 MeV.
The produced radioisotopes and isomers were identified using the analysis of
Figure 4.-ray spectra measured for 120 h, 8.1 h, 5.1 h and 8 min. (a)–(c) The
-ray spectra integrated for 120 h. The background signal measured for 99 h was normalized to the target measurement of 120 h. (d) The
-ray spectrum measured for 8.1 h, where peaks corresponding to
Zn
-ray spectrum for 5.1 h, where peaks for
Ni are observed. (f) The
-ray spectrum for 8 min, which shows the
Cu
4 Discussion
In the present study, we revealed that the radioisotope
Figure 5.Cross sections used in the simulation calculation, which are taken from the JENDL-4.0 nuclear data library.
|
Radioisotopic impurity is one of the key parameters for the realization of a radiopharmaceutical. To evaluate the radioisotopic impurity, we also evaluated the radioactivities of other isotopes, as listed in Table 2. The radioactivities of
To estimate the activity of
Figure 6.Geometry of the calculation of the yield of Cu using a laser for an optimized target system. (a) Cross-sectional view of the Be and
Zn target. (b) 3D image of the target.
5 Summary
In this study, we have demonstrated production of a medical radioisotope,
[1] T. Tajima, J. M. Dawson. Phys. Rev. Lett., 43, 267(1979).
[2] D. Strickland, G. Mourou. Opt. Commun., 56, 219(1985).
[3] G. A. Mourou, T. Tajima, S. V. Bulanov. Rev. Mod. Phys., 78, 309(2006).
[4] K. A. Tanaka, K. M. Spohr, D. L. Balabanski, S. Balascuta, L. Capponi, M. O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D. G. Ghita, S. Kisyov, V. Nastasa, J. F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C. A. Ur, D. Ursescu, N. V. Zamfir. Matter Radiat. Extrememes, 5, 024402(2020).
[5] R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, E. M. Campbell. Phys. Rev. Lett., 85, 2945(2000).
[6] A. G. S. Maksimchuk, K. Flippo, D. Umstadter, V. Y. Bychenkov. Phys. Rev. Lett., 84, 4108(2000).
[7] S. P. Hatchett, C. G. Brown, T. E. Cowan, E. A. Henry, J. S. Johnson, M. H. Key, J. A. Koch, A. B. Langdon, B. F. Lasinski, R. W. Lee, A. J. Mackinnon, D. M. Pennington, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. S. Singh, R. A. Snavely, M. A. Stoyer, S. C. Wilks, K. Yasuike. Phys. Plasmas, 7, 2076(2000).
[8] S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, R. A. Snavely. Phys. Plasmas, 8, 542(2001).
[9] Y. Arikawa, M. Utsugi, M. Alessio, T. Nagai, Y. Abe, S. Kojima, S. Sakata, H. Inoue, S. Fujioka, Z. Zhang, H. Chen, J. Park, J. Williams, T. Morita, Y. Sakawa, Y. Nakata, J. Kawanaka, T. Jitsuno, N. Sarukura, N. Miyanaga, M. Nakai, H. Shiraga, H. Nishimura, H. Azechi. Plasma Fusion Res., 10, 2404003(2015).
[10] S. Kar, A. Green, H. Ahmed, A. Alejo, A. P. L. Robinson, M. Cerchez, R. Clarke, D. Doria, S. Dorkings, J. Fernandez, S. R. Mirfayzi, P. McKenna, K. Naughton, D. Neely, P. Norreys, C. Peth, H. Powell, J. A. Ruiz, J. Swain, O. Willi, M. Borghesi. New J. Phys., 18, 053002(2016).
[11] S. R. Mirfayzi, A. Alejo, H. Ahmed, D. Raspino, S. Ansell, L. A. Wilson, C. Armstrong, N. M. H. Butler, R. J. Clarke, A. Higginson, J. Kelleher, C. D. Murphy, M. Notley, D. R. Rusby, E. Schooneveld, M. Borghesi, P. McKenna, N. J. Rhodes, D. Neely, C. M. Brenner, S. Kar. Appl. Phys. Lett., 111, 044101(2017).
[12] A. Kleinschmid, V. Bagnoud, O. Deppert, A. Favalli, S. Frydrych, J. Hornung, D. Jahn, G. Schaumann, A. Tebartz, F. Wagner, G. Wurden, B. Zielbauer, M. Roth. Phys. Plasmas, 25, 053101(2018).
[13] A. Favalli, N. Guler, D. Henzlova, S. Croft, K. Falk, D. C. Gautier, K. D. Ianakiev, M. Iliev, S. Palaniyappan, M. Roth, J. C. Fernandez, M. T. Swinhoe. Sci. Rep., 9, 2004(2019).
[14] T. Mori, A. Yogo, T. Hayakawa, S. R. Mirfayzi, Z. Lan, Y. Abe, Y. Arikawa, D. Golovin, T. Wei, Y. Honoki, M. Nakai, K. Mima, H. Nishimura, S. Fujioka, R. Kodama. Phys. Rev. C, 104, 015808(2021).
[15] S. R. Mirfayzi, A. Yogo, Z. Lan, T. Ishimoto, A. Iwamoto, M. Nagata, M. Nakai, Y. Arikawa, Y. Abe, D. Golovin, Y. Honoki, T. Mori, K. Okamoto, S. Shokita, D. Neely, S. Fujioka, K. Mima, H. Nishimura, S. Kar, R. Kodama. Sci. Rep., 10, 20157(2020).
[16] M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel, R. Haight, C. E. Hamilton, B. M. Hegelich, R. P. Johnson, F. Merrill, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, T. Taddeucci, J. L. Tybo, F. Wagner, S. A. Wender, C. H. Wilde, G. A. Wurden. Phys. Rev. Lett., 110, 044802(2013).
[17] N. Guler, P. Volegov, A. Favalli, F. E. Merrill, K. Falk, D. Jung, J. L. Tybo, C. H. Wilde, S. Croft, C. Danly, O. Deppert, M. Devlin, J. Fernandez, D. C. Gautier, M. Geissel, R. Haight, C. E. Hamilton, B. M. Hegelich, D. Henzlova, R. P. Johnson, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, M. T. Swinhoe, T. Taddeucci, S. A. Wender, G. A. Wurden, M. Roth. J. Appl. Phys., 120, 154901(2016).
[18] R. Mizutani, Y. Abe, Y. Arikawa, J. Nishibata, A. Yogo, S. R. Mirfayzi, H. Nishimura, K. Mima, S. Fujioka, M. Nakai, H. Shiraga, R. Kodama. High Energy Density Phys., 36, 100833(2020).
[19] K. Mima, A. Yogo, S. R. Mirfayzi, Z. Lan, Y. Arikawa, Y. Abe, H. Nishimura. Appl. Opt., 61, 2398(2022).
[20] A. Yogo, S. R. Mirfayzi, Y. Arikawa, Y. Abe, T. Wei, T. Mori, Z. Lan, Y. Hoonoki, D. O. Golovin, K. Koga, Y. Suzuki, M. Kanasaki, S. Fujioka, M. Nakai, T. Hayakawa, K. Mima, H. Nishimura, S. Kar, R. Kodama. Appl. Phys. Express, 14, 106001(2021).
[21] T. Wei, A. Yogo, T. Hayakawa, Y. Arikawa, Y. Abe, M. Nakanishi, S. R. Mirfayzi, Z. Lan, T. Mori, K. Mima, S. Fujioka, M. Murakami, M. Nakai, H. Nishimura, S. Kar, R. Kodama. AIP Adv., 12, 045220(2022).
[22] I. Novak-Hofer, P. A. Schubiger. Eur. J. Nucl. Med., 29, 821(2002).
[23] S. Mirzadeh, L. F. Mausner, S. C. Srivastava. Appl. Radiat. Isot., 37, 29(1986).
[24] N. A. Smith, D. Bowers, D. A. Ehst. Appl. Radiat. Isot., 70, 2377(2012).
[25] G. Ting, C.-H. Chang, H.-E. Wang, T.-W. Lee. J. Biomed. Biotechnol., 2010, 953537(2010).
[26] A. K. Dasgupta, L. F. Mausner, S. C. Srivastava. Appl. Radiat. Isot., 42, 371(1991).
[27] T. Katabuchi, S. Watanabe, N. S. Ishioka, Y. Iida, H. Hanaoka, K. Endo, S. Matsuhashi. J. Radioanal. Nucl. Chem., 277, 467(2008).
[28] J. Kozempel, K. Abbas, F. Simonelli, A. Bulgheroni, U. Holzwarth, N. Gibson. Radiochim. Acta, 100, 419(2012).
[29] M. Yagi, K. Kondo. Appl. Radiat. Isot., 29, 757(1978).
[30] P. Polak, J. Geradts, R. Vlist, L. Lindner. Radiochimica Acta, 40, 169(1986).
[31] G. H. Hovhannisyan, T. M. Bakhshiyan, R. K. Dallakyanc. Nucl. Instrum. Methods Phys. Res. Sect. B, 498, 48(2021).
[32] L. F. Mausner, K. L. Kolsky, V. Joshi, S. C. Srivastava. Appl. Radiat. Isot., 49, 285(1998).
[33] M. Al-Abyad, I. Spahn, S. Sudar, M. Morsy, M. N. H. Comsan, J. Csikai, S. M. Qaim, H. H. Coenen. Appl. Radiat. Isot., 64, 717(2006).
[34] T. Kin, Y. Nagai, N. Iwamoto, F. Minato, O. Iwamoto, Y. Hatsukawa, M. Segawa, H. Harada, C. Konno, K. Ochiai, K. Takakura. J. Phys. Soc. Jpn., 82, 034201(2013).
[35] M. Kawabata, S. Motoishi, A. Ota, A. Motomura, H. Saeki, K. Tsukada, S. Hashimoto, N. Iwamoto, Y. Nagai, K. Hashimoto. J. Radioanal. Nucl. Chem., 330, 913(2021).
[36] N. Sato, K. Tsukada, S. Watanabe, N. S. Ishioka, M. Kawabata, H. Saeki, Y. Nagai, T. Kin, F. Minato, N. Iwamoto, O. Iwamoto. J. Phys. Soc. Jpn., 83, 073201(2014).
[37] T. Mori, A. Yogo, T. Hayakawa, S. R. Mirfayzi, Z. Lan, T. Wei, Y. Abe, Y. Arikawa, M. Nakai, K. Mima, H. Nishimura, S. Fujioka, R. Kodama. J. Phys. G, 49, 065103(2022).
[38] J. Kawanaka, N. Miyanaga, H. Azechi, T. Kanabe, T. Jitsuno, K. Kondo, Y. Fujimoto, N. Morio, S. Matsuo, Y. Kawakami, R. Mizoguchi, K. Tauchi, M. Yano, S. Kudo, Y. Ogura. J. Phys. Conf. Ser., 112, 032006(2008).
[39] J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, P. Audebert. Nat. Phys., 2, 48(2006).
[40] J. Fuchs, Y. Sentoku, E. d’Humières, T. E. Cowan, J. Cobble, P. Audebert, A. Kemp, A. Nikroo, P. Antici, E. Brambrink, A. Blazevic, E. M. Campbell, J. C. Fernández, J.-C. Gauthier, M. Geissel, M. Hegelich, S. Karsch, H. Popescu, N. Renard-LeGalloudec, M. Roth, J. Schreiber, R. Stephens, H. Pépin. Phys. Plasmas, 14, 053105(2007).
[41] A. Yogo, K. Mima, N. Iwata, S. Tosaki, A. Morace, Y. Arikawa, S. Fujioka, T. Johzaki, Y. Sentoku, H. Nishimura, A. Sagisaka, K. Matsuo, N. Kamitsukasa, S. Kojima, H. Nagatomo, M. Nakai, H. Shiraga, M. Murakami, S. Tokita, J. Kawanaka, N. Miyanaga, K. Yamanoi, T. Norimatsu, H. Sakagami, S. V. Bulanov, K. Kondo, H. Azechi. Sci. Rep., 7, 42451(2017).
[42] D. O. Golovin, S. R. Mirfayzi, S. Shokita, Y. Abe, Z. Lan, Y. Arikawa, A. Morace, T. A. Pikuz, A. Yogo. J. Instrument., 16, T02005(2021).
[43] Y. Abe, H. Hosoda, Y. Arikawa, T. Nagai, S. Kojima, S. Sakata, H. Inoue, Y. Iwasa, K. Iwano, K. Yamanoi, S. Fujioka, M. Nakai, N. Sarukura, H. Shiraga, T. Norimatsu, H. Azechi. Rev. Sci. Instrum., 85, 11E126(2014).
[44] S. R. Mirfayzi, S. Kar, H. Ahmed, A. G. Krygier, A. Green, A. Alejo, R. Clarke, R. R. Freeman, J. Fuchs, D. Jung, A. Kleinschmidt, J. T. Morrison, Z. Najmudin, H. Nakamura, P. Norreys, M. Oliver, M. Roth, L. Vassura, M. Zepf, M. Borghesi. Rev. Sci. Instrum., 86, 073308(2015).
[45] T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S.-i. Abe, T. Kai, P.-E. Tsai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver, K. Niita. J. Nucl. Sci. Technol., 55, 684(2018).
[46] K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, J.-I. Katakura. J. Nucl. Sci. Technol., 48(2011).
[47] S. Watanabe, Y. Iida, N. Suzui, T. Katabuchi, S. Ishii, N. Kawachi, H. Hanaoka, S. Matsuhashi, K. Endo, N. Ishioka. J. Radioanal. Nucl. Chem., 280, 199(2009).
Get Citation
Copy Citation Text
Takato Mori, Akifumi Yogo, Yasunobu Arikawa, Takehito Hayakawa, Seyed R. Mirfayzi, Zechen Lan, Tianyun Wei, Yuki Abe, Mitsuo Nakai, Kunioki Mima, Hiroaki Nishimura, Shinsuke Fujioka, Ryosuke Kodama. Feasibility study of laser-driven neutron sources for pharmaceutical applications[J]. High Power Laser Science and Engineering, 2023, 11(2): 02000e20
Category: Research Articles
Received: Nov. 11, 2022
Accepted: Jan. 5, 2023
Posted: Jan. 6, 2023
Published Online: Apr. 23, 2023
The Author Email: Akifumi Yogo (yogo-a@ile.osaka-u.ac.jp)