Chinese Optics, Volume. 18, Issue 3, 415(2025)

Rubidium atomic optical frequency standard based on two-photon transition

Jiong-yang ZHANG1, Hao ZHAI1,2、*, Ji WANG1、*, Yu-hua XIAO1, Hu DAI1, Ji-qing LIAN1, Shi-yu YANG1, Jiang CHEN1, and Zhi-dong LIU1
Author Affiliations
  • 1National key Laboratory on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, China
  • 2School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083, China
  • show less
    References(100)

    [3] SUN H P, YANG Y X, YE ZH H. Key scientific frontiers and core technologies in space-time reference research in the era of precision (quantum) measurement[J]. Bulletin of National Natural Science Foundation of China, 38, 172-181(2024).

    [4] YANG Y X, REN X, JIA X L. Development trends of the national secure PNT system based on BDS[J]. Science China Earth Sciences, 66, 929-938(2023).

    [5] LUO J, AI L H, AI Y L. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 60, 1-19(2021).

    [7] ZHAI H, LIAN J Q. Analysis of the influence of atomic clock performance on positioning accuracy of satellite navigation systems[J]. Navigation Positioning and Timing, 8, 118-123(2021).

    [8] [8] CAO Y H, DU R CH, ZHAO X W, et al. Application of atomic clock technology in grid system —preliminary study on construction of time synchronization system in China grid[C]. The 12th China Satellite Navigation Annual Conference, China Satellite Navigation Office Academic Exchange Center, 2021: 8. (in Chinese).

    [9] WANG Y ZH, TIAN Y D, PENG G. Research on the application of cesium atomic clock in communication network[J]. Digital Insige, 10, 59(2021).

    [11] CUI J Q, MING G, WANG F et al. Realization of a rubidium atomic frequency standard with short-term stability in 10−14 τ−1/2 level[J]. IEEE Transactions on Instrumentation and Measurement, 73, 1500507(2024).

    [13] [13] JEANMAIRE A, ROCHAT P, EMMA F. Rubidium atomic clock f Galileo[C]. Proceedings of the 31th Annual Precise Time Time Interval Systems Applications Meeting, 1999: 627636.

    [14] CHEN J, LIU ZH D, WANG J. Small compact magnetically state-selected cesium atomic clock[J]. Journal of Time and Frequency, 45, 9-14(2022).

    [15] ZHAO X W, WEI Q, LI D X. Progress on optically pumped cesium beam frequency standard[J]. Journal of Time and Frequency, 45, 1-8(2022).

    [16] [16] CHADSEY H, KUBIK A. Maintenance of HP 5071A primary frequency stards at USNO[C]. Proceedings of Precise Time Time Interval Syst. Appl. Meeting, 1997: 4959.

    [17] WANG J, HUANG L Y, CHEN J. Progress on cesium atomic frequency standard with magnetic state-selection technology[J]. Journal of Time and Frequency, 45, 15-25(2022).

    [19] [19] POLYAKOV V, TIMOFEEV Y, DEOV N. Frequency stability improvement of an active hydrogen maser with a singlestate ion system[C]. 2021 Joint Conference of the European Frequency Time Fum IEEE International Frequency Control Symposium, IEEE, 2021: 14.

    [23] [23] PELLE B, ARCHAMBAULT L, DESRUELLE B, et al. Coldatombased commercial microwave clocks at 1× 10−15 relative instability over me than one month[C]. 2022 Joint Conference of the European Frequency Time Fum IEEE International Frequency Control Symposium, IEEE, 2022: 14.

    [24] CHEN W L, LIU K, ZHENG F S. Enineering highly reliable Rb fountain clock with a long-term instability of 2.6×10−16[J]. Chinese Journal of Scientific Instrument, 45, 79-86(2024).

    [25] LI H, DU Y B, LIU H L. Development of cesium fountain clock as local precision time and frequency standard[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 50, 23-29(2022).

    [56] [56] JANA S, SAHOO B K, SHARMA A. Progress towards the development of a ptable alloptical atomic clock based on a twophoton transition in warm atomic vap[C]. 2022 URSI Regional Conference on Radio Science, IEEE, 2022: 14.

    [57] MENG Y M, XIANG J F, XU B. Frequency stabilization characteristics of 87Rb two-photon transition spectrum[J]. Chinese Journal of Lasers, 50, 2301013(2023).

    [58] [58] CHU C H, SHIH Y J, CHANG P CH, et al. Frequency of the unmodulated 778nm rubidium clock measured in high vacuum[C]. 2023 Conference on Lasers ElectroOptics, IEEE, 2023: 12.

    [63] VASILENKO L S, CHEBOTAEV V P, SHISHAEV A V. Line shape of two-photon absorption in a standing-wave field in a gas[J]. Journal of Experimental and Theoretical Physics Letters, 12, 113-116(1970).

    [65] [65] DEMTRÖDER W. Laser Spectroscopy 2: Experimental Techniques[M]. Berlin: Springer, 2008.

    [68] FAN P R, LI Y H, LI SH H. Experimental investigation on the 420 nm blue light generated by two-photon transition of Rb[J]. Journal of Quantum Optics, 23, 144-150(2017).

    [76] [76] RIEHLE F. Frequency Stards: Basics Applications[M]. Weinheim: WileyVCH, 2004.

    [83] [83] COTE K, JACKSON S, ZAZO R, et al. The stratospheric optical rubidium clock experiment[C]. 70th International Astronautical Congress, IAF, 2019.

    [85] [85] LOCKE C R, NG S, SCARABEL J, et al. Ptable optical atomic clock based on a dichroic twophoton transition in rubidium[C]. 2023 Joint Conference of the European Frequency Time Fum IEEE International Frequency Control Symposium, IEEE, 2023: 12.

    [87] [87] WU J T, HOU D, QIN ZH Y, et al. Observation of Rb twophoton absption directly excited by an erbiumfiberlaserbased optical frequency comb via spectral control[J]. Physical Review A, 2014, 89(4): 041402(R).

    [93] [93] AFRL. Navigation technology satellite3 (NTS3) [EBOL]. [20240628]. https:afresearchlab.comtechnologynts3.

    [94] [94] LEMKE N D, PHELPS G, BURKE J H, et al. The optical rubidium atomic frequency stard at AFRL[C]. 2017 Joint Conference of the European Frequency Time Fum IEEE International Frequency Control Symposium, IEEE, 2017: 466467.

    CLP Journals

    [1] Zhi-sheng WU, Hong-bo ZOU, Wen-wu ZHU, Wei-ming QI, Li-qiang WANG, Bo YUAN, Qing YANG, Xiao-rong XU, Hui-hui YAN. Lipid segmentation method based on magnification endoscopy with narrow-band imaging[J]. Chinese Optics, 2024, 17(4): 982

    Tools

    Get Citation

    Copy Citation Text

    Jiong-yang ZHANG, Hao ZHAI, Ji WANG, Yu-hua XIAO, Hu DAI, Ji-qing LIAN, Shi-yu YANG, Jiang CHEN, Zhi-dong LIU. Rubidium atomic optical frequency standard based on two-photon transition[J]. Chinese Optics, 2025, 18(3): 415

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review

    Received: Jul. 12, 2024

    Accepted: Oct. 8, 2024

    Published Online: Jun. 16, 2025

    The Author Email:

    DOI:10.37188/CO.2024-0120

    Topics