Chinese Optics, Volume. 18, Issue 3, 415(2025)
Rubidium atomic optical frequency standard based on two-photon transition
[3] SUN H P, YANG Y X, YE ZH H. Key scientific frontiers and core technologies in space-time reference research in the era of precision (quantum) measurement[J]. Bulletin of National Natural Science Foundation of China, 38, 172-181(2024).
[4] YANG Y X, REN X, JIA X L. Development trends of the national secure PNT system based on BDS[J]. Science China Earth Sciences, 66, 929-938(2023).
[5] LUO J, AI L H, AI Y L. A brief introduction to the TianQin project[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 60, 1-19(2021).
[7] ZHAI H, LIAN J Q. Analysis of the influence of atomic clock performance on positioning accuracy of satellite navigation systems[J]. Navigation Positioning and Timing, 8, 118-123(2021).
[8] [8] CAO Y H, DU R CH, ZHAO X W, et al. Application of atomic clock technology in grid system —preliminary study on construction of time synchronization system in China grid[C]. The 12th China Satellite Navigation Annual Conference, China Satellite Navigation Office Academic Exchange Center, 2021: 8. (in Chinese).
[9] WANG Y ZH, TIAN Y D, PENG G. Research on the application of cesium atomic clock in communication network[J]. Digital Insige, 10, 59(2021).
[11] CUI J Q, MING G, WANG F et al. Realization of a rubidium atomic frequency standard with short-term stability in 10−14
[13] [13] JEANMAIRE A, ROCHAT P, EMMA F. Rubidium atomic clock f Galileo[C]. Proceedings of the 31th Annual Precise Time Time Interval Systems Applications Meeting, 1999: 627636.
[14] CHEN J, LIU ZH D, WANG J. Small compact magnetically state-selected cesium atomic clock[J]. Journal of Time and Frequency, 45, 9-14(2022).
[15] ZHAO X W, WEI Q, LI D X. Progress on optically pumped cesium beam frequency standard[J]. Journal of Time and Frequency, 45, 1-8(2022).
[16] [16] CHADSEY H, KUBIK A. Maintenance of HP 5071A primary frequency stards at USNO[C]. Proceedings of Precise Time Time Interval Syst. Appl. Meeting, 1997: 4959.
[17] WANG J, HUANG L Y, CHEN J. Progress on cesium atomic frequency standard with magnetic state-selection technology[J]. Journal of Time and Frequency, 45, 15-25(2022).
[19] [19] POLYAKOV V, TIMOFEEV Y, DEOV N. Frequency stability improvement of an active hydrogen maser with a singlestate ion system[C]. 2021 Joint Conference of the European Frequency Time Fum IEEE International Frequency Control Symposium, IEEE, 2021: 14.
[23] [23] PELLE B, ARCHAMBAULT L, DESRUELLE B, et al. Coldatombased commercial microwave clocks at 1× 10−15 relative instability over me than one month[C]. 2022 Joint Conference of the European Frequency Time Fum IEEE International Frequency Control Symposium, IEEE, 2022: 14.
[24] CHEN W L, LIU K, ZHENG F S. Enineering highly reliable Rb fountain clock with a long-term instability of 2.6×10−16[J]. Chinese Journal of Scientific Instrument, 45, 79-86(2024).
[25] LI H, DU Y B, LIU H L. Development of cesium fountain clock as local precision time and frequency standard[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 50, 23-29(2022).
[56] [56] JANA S, SAHOO B K, SHARMA A. Progress towards the development of a ptable alloptical atomic clock based on a twophoton transition in warm atomic vap[C]. 2022 URSI Regional Conference on Radio Science, IEEE, 2022: 14.
[57] MENG Y M, XIANG J F, XU B. Frequency stabilization characteristics of 87Rb two-photon transition spectrum[J]. Chinese Journal of Lasers, 50, 2301013(2023).
[58] [58] CHU C H, SHIH Y J, CHANG P CH, et al. Frequency of the unmodulated 778nm rubidium clock measured in high vacuum[C]. 2023 Conference on Lasers ElectroOptics, IEEE, 2023: 12.
[63] VASILENKO L S, CHEBOTAEV V P, SHISHAEV A V. Line shape of two-photon absorption in a standing-wave field in a gas[J]. Journal of Experimental and Theoretical Physics Letters, 12, 113-116(1970).
[65] [65] DEMTRÖDER W. Laser Spectroscopy 2: Experimental Techniques[M]. Berlin: Springer, 2008.
[68] FAN P R, LI Y H, LI SH H. Experimental investigation on the 420 nm blue light generated by two-photon transition of Rb[J]. Journal of Quantum Optics, 23, 144-150(2017).
[76] [76] RIEHLE F. Frequency Stards: Basics Applications[M]. Weinheim: WileyVCH, 2004.
[83] [83] COTE K, JACKSON S, ZAZO R, et al. The stratospheric optical rubidium clock experiment[C]. 70th International Astronautical Congress, IAF, 2019.
[85] [85] LOCKE C R, NG S, SCARABEL J, et al. Ptable optical atomic clock based on a dichroic twophoton transition in rubidium[C]. 2023 Joint Conference of the European Frequency Time Fum IEEE International Frequency Control Symposium, IEEE, 2023: 12.
[87] [87] WU J T, HOU D, QIN ZH Y, et al. Observation of Rb twophoton absption directly excited by an erbiumfiberlaserbased optical frequency comb via spectral control[J]. Physical Review A, 2014, 89(4): 041402(R).
[93] [93] AFRL. Navigation technology satellite3 (NTS3) [EBOL]. [20240628]. https:afresearchlab.comtechnologynts3.
[94] [94] LEMKE N D, PHELPS G, BURKE J H, et al. The optical rubidium atomic frequency stard at AFRL[C]. 2017 Joint Conference of the European Frequency Time Fum IEEE International Frequency Control Symposium, IEEE, 2017: 466467.
Get Citation
Copy Citation Text
Jiong-yang ZHANG, Hao ZHAI, Ji WANG, Yu-hua XIAO, Hu DAI, Ji-qing LIAN, Shi-yu YANG, Jiang CHEN, Zhi-dong LIU. Rubidium atomic optical frequency standard based on two-photon transition[J]. Chinese Optics, 2025, 18(3): 415
Category: Review
Received: Jul. 12, 2024
Accepted: Oct. 8, 2024
Published Online: Jun. 16, 2025
The Author Email: