Journal of Semiconductors, Volume. 40, Issue 9, 091002(2019)
Reducing the power consumption of two-dimensional logic transistors
[1] K Lange, G Müller-Seitz, J Sydow et al. Financing innovations in uncertain networks—Filling in roadmap gaps in the semiconductor industry. Research Policy, 42, 647(2013).
[2] M M Waldrop. The chips are down for Moore’s law. Nat News, 530, 144(2016).
[3] W Liu, J Kang, W Cao et al. High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance. IEEE International Electron Devices Meeting, 19(2013).
[4] C Martin. Towards a new scale. Nat Nanotechnol, 11, 112(2016).
[5] D Kwon, K Chatterjee, A J Tan et al. Improved subthreshold swing and short channel effect in FDSOI n-channel negative capacitance field effect transistors. IEEE Electron Device Lett, 39, 300(2017).
[6]
[7] B Radisavljevic, A Radenovic, J Brivio et al. Single-layer MoS2 transistors. Nat Nanotechnol, 6, 147(2011).
[8] H Liu, A T Neal, P D Ye. Channel length scaling of MoS2 MOSFETs. ACS Nano, 6, 8563(2012).
[9] S B Desai, S R Madhvapathy, A B Sachid et al. MoS2 transistors with 1-nanometer gate lengths. Science, 354, 99(2016).
[10] K Alam, R K Lake. Monolayer MoS2 transistors beyond the technology road map. IEEE Trans Electron Devices, 59, 3250(2012).
[11] Q H Wang, K Kalantar-Zadeh, A Kis et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 7, 699(2012).
[12] Z Yu, Z Y Ong, S Li et al. Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv Fun Mater, 27, 1604093(2017).
[13] G Fiori, F Bonaccorso, G Iannaccone et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 9, 768(2014).
[14] M Chhowalla, D Jena, H Zhang. Two-dimensional semiconductors for transistors. Nat Rev Mater, 1, 16052(2016).
[15]
[16] Z Yu, H Wang, W Li et al. Negative capacitance 2D MoS2 transistors with sub-60 mV/dec subthreshold swing over 6 orders, 250
[17] S Salahuddin, S Dattat. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett, 8, 405(2008).
[18] M Si, C J Su, C Jiang et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat Nanotechnol, 13, 24(2018).
[19] F J Himpsel, F R McFeely, A Taleb-Ibrahimi et al. Microscopic structure of the SiO2/Si interface. Phys Rev B, 38, 6084(1988).
[20] J Robertson. High dielectric constant oxides. Eur Phys J-Appl Phys, 28, 265(2004).
[21] J Robertson. High dielectric constant gate oxides for metal oxide Si transistors. Rep Prog Phys, 69, 327(2005).
[22] C Auth, A Cappellani, J S Chun et al. In 45 nm high
[23] S M George. Atomic layer deposition: an overview. Chem Rev, 110, 111(2009).
[24] P J Cowdery-Corvan, D H Levy, S F Nelson et al. Process for atomic layer deposition. Google Patents(2012).
[25] Z Krivokapic, U Rana, R Galatage et al. 14 nm ferroelectric FinFET technology with steep subthreshold slope for ultra low power applications. IEEE International Electron Devices Meeting (IEDM), 15.1.1(2017).
[26] S McDonnell, B Brennan, A Azcatl et al. HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano, 7, 10354(2013).
[27] J Yang, S Kim, W Choi et al. Improved growth behavior of atomic-layer-deposited high-
[28] W Yang, Q Q Sun, Y Geng et al. The integration of sub-10 nm gate oxide on MoS2 with ultra low leakage and enhanced mobility. Sci Rep, 5, 11921(2015).
[29] A Azcatl, K Santosh, X Peng et al. HfO2 on UV–O3 exposed transition metal dichalcogenides: interfacial reactions study. 2D Mater, 2, 014004(2015).
[30] A Azcatl, S McDonnell, K C Santosh et al. MoS2 functionalization for ultra-thin atomic layer deposited dielectrics. Appl Phys Lett, 104, 111601(2014).
[31] J Wang, S Li, X Zou et al. Integration of high-
[32] M Xiao, C Qiu, Z Zhang et al. Atomic-layer-deposition growth of an ultrathin HfO2 film on graphene. ACS Appl Mater Interfaces, 9, 34050(2017).
[33] X Zou, J Wang, C H Chiu et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv Mater, 26, 6255(2014).
[34] N Takahashi, K Nagashio. Buffer layer engineering on graphene via various oxidation methods for atomic layer deposition. Appl Phys Express, 9, 125101(2016).
[35] Y Y Illarionov, A G Banshchikov, D K Polyushkin et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat Electron, 2, 230(2019).
[36] L Liao, Y C Lin, M Bao et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature, 467, 305(2010).
[37] L Liao, J Bai, Y Qu et al. High-
[38] X Wang, S M Tabakman, H Dai. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J Am Chem Soc, 130, 8152(2008).
[39] J M Alaboson, Q H Wang, J D Emery et al. Seeding atomic layer deposition of high-
[40] V K Sangwan, D Jariwala, S A Filippone et al. Quantitatively enhanced reliability and uniformity of high-
[41] J H Park, S Fathipour, I Kwak et al. Atomic layer deposition of Al2O3 on WSe2 functionalized by titanyl phthalocyanine. ACS Nano, 10, 6888(2016).
[42] B Jiang, Z Y Yang, X Q Liu et al. Interface engineering for two-dimensional semiconductor transistors. Nano Today, 25, 122(2019).
[43] H G Kim, H B R Leek. Atomic layer deposition on 2D materials. Chem Mater, 29, 3809(2017).
[44]
[45] A I Khan, K Chatterjee, B Wang et al. Negative capacitance in a ferroelectric capacitor. Nat Mater, 7, 182(2015).
[46] M Hoffmann, M Pešić, K Chatterjee et al. Direct observation of negative capacitance in polycrystalline ferroelectric HfO2. Adv Funct Mater, 26, 8643(2016).
[47] M Hoffmann, F P Fengler, M Herzig et al. Unveiling the double-well energy landscape in a ferroelectric layer. Nature, 565, 464(2019).
[48] J Müller, T S Böscke, U Schröder et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett, 12, 4318(2012).
[49] C H Cheng, A Chin. Low-voltage steep turn-on pMOSFET using ferroelectric high-
[50] M H Lee, S T Fan, C H Tang et al. Physical thickness 1.x nm ferroelectric HfZrO
[51] C C Li, K S Chang-Liao, L J Liu et al. Improved electrical characteristics of Ge MOS devices with high oxidation state in HfGeO
[52] J Zhou, G Han et al. Ferroelectric HfZrO
[53] M H Lee, P G Chen, C Liu et al. Prospects for ferroelectric HfZrO
[54] M Si, C Jiang, C J Su et al. Sub-60 mV/dec ferroelectric HZO MoS2 negative capacitance field-effect transistor with internal metal gate: the role of parasitic capacitance. IEEE International Electron Devices Meeting (IEDM), 23.5.1(2017).
[55] F A McGuire, Y C Lin, K Price et al. Sustained sub-60 mV/decade switching via the negative capacitance effect in MoS2 transistors. Nano Lett, 17, 4801(2017).
[56] M Si, C Jiang, W Chung et al. Steep-slope WSe2 negative capacitance field-effect transistor. Nano Lett, 18, 6(2018).
[57] J Wang, X Guo, Z Yu et al. Steep slope p-type 2D WSe2 field-effect transistors with van der waals contact and negative capacitance. IEEE International Electron Devices Meeting (IEDM), 22.3.1(2018).
[58] H W Park, J Roh, Y B Lee et al. Modeling of negative capacitance in ferroelectric thin films. Adv Mater, 1805266(2019).
[59] X Wang, Y Chen, G Wu et al. Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating. npj 2D Mater Appl, 1, 38(2017).
[60] X Wang, P Yu, Z Lei et al. Van der Waals negative capacitance transistors. Nat Commun, 10, 3037(2019).
[61] M W Si, P Y Liao, G Qiu et al. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano, 12, 7(2018).
[62] J Müller, T S Böscke, S Müller et al. Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories. IEEE International Electron Devices Meeting (IEDM), 10, 10.8.1(2013).
[63] T Shimizu, T Yokouchi, T Oikawa et al. Contribution of oxygen vacancies to the ferroelectric behavior of Hf0.5Zr0.5O2 thin films. Appl Phys Lett, 106, 112904(2015).
Get Citation
Copy Citation Text
Weisheng Li, Hongkai Ning, Zhihao Yu, Yi Shi, Xinran Wang. Reducing the power consumption of two-dimensional logic transistors[J]. Journal of Semiconductors, 2019, 40(9): 091002
Category: Reviews
Received: Jul. 30, 2019
Accepted: --
Published Online: Sep. 22, 2021
The Author Email: