Infrared Technology, Volume. 45, Issue 2, 143(2023)
Infrared and Visible Image Fusion Based on Multi-scale and Attention Model
[8] [8] LI H, WU X, Durrani T S. Infrared and visible image fusion with ResNet and zero-phase component analysis[J]. Infrared Physics & Technology, 2019, 102: 103039.
[9] [9] LIN T, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 936-944.
[10] [10] Woo S, Park J, Lee J, et al. CBAM: Convolution-al Block Attention Module[C]//ECCV, 2018: 3-19.
[11] [11] LI H, WU X J, Durrani T. NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models [J]. IEEE Transactions on Instrumentation and Measurement, 2020, 12(69): 9645-9656.
[13] [13] LIN T Y, Maire M, Belongie S, et al. Microsoft coco: common objects in context[C]//ECCV, 2014: 3-5.
[14] [14] Toet A. TNO Image Fusion Dataset. figshare. Dataset[DB/OL]. https: //doi.org/ 10.6084/m9.figshare.1008029.v2, 2014.
[15] [15] LI H, WU X J. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Trans. Image Process, 2019, 28(5): 2614-2623.
[16] [16] Prabhakar K R, Srikar V S, Babu R V. DeepFuse: a deep unsuper-vised approach for exposure fusion with extreme exposure image pairs[C]//2017 IEEE International Conference on Computer Vision (ICCV), 2017: 4724-4732.
[17] [17] MA J, ZHOU Z, WANG B. et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-17.
Get Citation
Copy Citation Text
HUANG Linglin, LI Qiang, LU Jinzheng, HE Xianzhen, PENG Bo. Infrared and Visible Image Fusion Based on Multi-scale and Attention Model[J]. Infrared Technology, 2023, 45(2): 143
Received: Feb. 25, 2021
Accepted: --
Published Online: Mar. 20, 2023
The Author Email: Qiang LI (liqiangsir@swust.edu.cn)
CSTR:32186.14.