Chinese Journal of Lasers, Volume. 47, Issue 8, 810004(2020)

Wind Vector Estimation of Coherent Doppler Wind Lidar Based on Genetic Algorithm

Yuan Lucheng1,2, Liu Heng1,2, Liu Jiqiao1,2、*, Zhu Xiaopeng1,2, Hu Guyu1, and Chen Weibiao1,2
Author Affiliations
  • 1Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics andFine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,Beijing 100049, China
  • show less
    Figures & Tables(8)
    Spectrograms of 64 scanning positions at low signal-to-noise ratio (SNR) for coherent Doppler wind measurement lidar. (a) Original spectrogram; (b) result of frequency spectrum estimation algorithm (dashed line)
    Population fitness of traditional genetic algorithm and genetic algorithms after different improvements varying with iterations. (a) Traditional genetic algorithm; (b) optimization for initialization scheme; (c) optimization for selection operation; (d) improved genetic algorithm
    Structural diagram of coherent Doppler wind lidar system[17]
    Comparison of wind speed and wind direction between coherent Doppler wind lidar and sounding balloons. (a) Comparison of wind speed profiles; (b) comparison of wind direction profiles; (c) comparison of statistical results of wind speed; (d) comparison of statistical results of wind direction
    Comparison of wind profiles obtained by genetic algorithm based frequency spectrum estimation method and least squares method. (a)(e) 2018-08-10T20:55; (b)(f) 2018-08-10T21:22; (c)(g) 2018-08-10T21:41; (d)(h) 2018-08-10T21:49
    • Table 1. Simulation results

      View table

      Table 1. Simulation results

      Signal-to-noiseratio /dBParameterNonlinear least squares methodFrequency spectrum estimationmethod based on genetic algorithm
      Mean deviationStandard deviationMean deviationStandard deviation
      10Wind speed /(m·s-1)0.010.230.110.38
      Wind direction /(°)-0.071.400.291.48
      5Wind speed /(m·s-1)0.100.47-0.010.32
      Wind direction /(°)0.433.77-0.075.23
      4.5Wind speed /(m·s-1)0.280.40-0.220.41
      Wind direction /(°)-0.793.47-0.663.11
      4Wind speed /(m·s-1)0.131.12-0.060.38
      Wind direction /(°)-31.8393.110.364.57
      3.5Wind speed /(m·s-1)1.172.46-0.040.66
      Wind direction /(°)-10.8132.15-0.401.48
      3Wind speed /(m·s-1)1.424.99-0.400.88
      Wind direction /(°)-41.5491.720.154.00
      2Wind speed /(m·s-1)4.816.30-0.160.95
      Wind direction /(°)-147.10110.131.235.70
      1.5Wind speed /(m·s-1)7.396.10-0.401.23
      Wind direction /(°)-140.41124.01-1.875.08
    • Table 2. Results after 1000 times running of traditional genetic algorithm and genetic algorithms after different improvements

      View table

      Table 2. Results after 1000 times running of traditional genetic algorithm and genetic algorithms after different improvements

      MethodNumber ofconvergenceresultsNumber ofachievedhigh-qualitysolutionsAverageiterations ofconvergence
      Traditional geneticalgorithm43910242.53
      Limit range ofinitial wind speed57587039.73
      Update selectionoperation98928945.84
      Improved geneticalgorithm1000100023.82
    • Table 3. Main parameters of all-fiber coherent Doppler wind lidar system[19]

      View table

      Table 3. Main parameters of all-fiber coherent Doppler wind lidar system[19]

      ParameterSpecification
      Operating wavelength /nm1540
      Pulse energy /μJ300
      Pulse repetition rate /kHz10
      Pulse width /ns400
      Power of LO /mW0.8
      Range gate /m30
      Telescope aperture /mmФ100
      Scanner aperture /mmФ100
      Zenith angle /(°)20
      Intermediate frequency /MHz160
      Sampling rate of AD converter /(Sa·s-1)1
      Resolution of AD converter /bit10
      Number of accumulated pulses10000
    Tools

    Get Citation

    Copy Citation Text

    Yuan Lucheng, Liu Heng, Liu Jiqiao, Zhu Xiaopeng, Hu Guyu, Chen Weibiao. Wind Vector Estimation of Coherent Doppler Wind Lidar Based on Genetic Algorithm[J]. Chinese Journal of Lasers, 2020, 47(8): 810004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Feb. 27, 2020

    Accepted: --

    Published Online: Aug. 17, 2020

    The Author Email: Jiqiao Liu (liujiqiao@siom.ac.cn)

    DOI:10.3788/CJL202047.0810004

    Topics