Opto-Electronic Advances, Volume. 8, Issue 4, 240220-1(2025)

Tunable vertical cavity microlasers based on MAPbI3 phase change perovskite

Rongzi Wang1、†, Ying Su1、†, Hongji Fan1, Chengxiang Qi1, Shuang Zhang2,3,4, and Tun Cao1、†,*
Author Affiliations
  • 1School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
  • 2New Cornerstone Science Laboratory, Department of Physics, University of Hong Kong, Hong Kong 999077, China
  • 3Department of Electrical & Electronic Engineering, University of Hong Kong, Hong Kong 999077, China
  • 4Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518052, China
  • show less
    References(66)

    [1] C Huang, C Zhang, SM Xiao et al. Ultrafast control of vortex microlasers. Science, 367, 1018-1021(2020).

    [2] HM Zhu, YP Fu, F Meng et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 14, 636-642(2015).

    [3] WZ Sun, YL Liu, GY Qu et al. Lead halide perovskite vortex microlasers. Nat Commun, 11, 4862(2020).

    [4] G Adamo, Krishnamoorthy HN Swaha, D Cortecchia et al. Metamaterial enhancement of metal-halide perovskite luminescence. Nano Lett, 20, 7906-7911(2020).

    [5] M Karlsson, ZY Yi, S Reichert et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat Commun, 12, 361(2021).

    [6] S Makarov, A Furasova, E Tiguntseva et al. Halide‐perovskite resonant nanophotonics. Adv Opt Mater, 7, 1800784(2019).

    [7] J Jeong, M Kim, J Seo et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 592, 381-385(2021).

    [8] XY Shen, BM Gallant, P Holzhey et al. Chloride‐based additive engineering for efficient and stable wide‐bandgap perovskite solar cells. Adv Mater, 35, 2211742(2023).

    [9] ZG Li, Y Cao, JS Feng et al. Stable and high‐efficiency perovskite solar cells using effective additive ytterbium fluoride. Small, 19, 2303017(2023).

    [10] A Swarnkar, AR Marshall, EM Sanehira et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 354, 92-95(2016).

    [11] T Chiba, Y Hayashi, H Ebe et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 12, 681-687(2018).

    [12] MM Hao, Y Bai, S Zeiske et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−x FAx PbI3 quantum dot solar cells with reduced phase segregation. Nat Energy, 5, 79-88(2020).

    [13] F Deschler, M Price, S Pathak et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett, 5, 1421-1426(2014).

    [14] JM Pina, DH Parmar, G Bappi et al. Deep‐blue perovskite single‐mode lasing through efficient vapor‐assisted chlorination. Adv Mater, 33, 2006697(2021).

    [15] ST Chen, K Roh, J Lee et al. A photonic crystal laser from solution based organo-lead iodide perovskite thin films. ACS Nano, 10, 3959-3967(2016).

    [16] XX Wu, S Zhang, JP Song et al. Exciton polariton condensation from bound states in the continuum at room temperature. Nat Commun, 15, 3345(2024).

    [17] BR Sutherland, S Hoogland, MM Adachi et al. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano, 8, 10947-10952(2014).

    [18] Q Zhang, R Su, XF Liu et al. High‐quality whispering‐gallery‐mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater, 26, 6238-6245(2016).

    [19] JP Song, QY Shang, XY Deng et al. Continuous‐wave pumped perovskite lasers with device area below 1 µm2. Adv Mater, 35, 2302170(2023).

    [20] CJ Qin, ASD Sandanayaka, CY Zhao et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 585, 53-57(2020).

    [21] JR Harwell, GL Whitworth, GA Turnbull et al. Green perovskite distributed feedback lasers. Sci Rep, 7, 11727(2017).

    [22] N Kurahashi, M Runkel, C Kreusel et al. Distributed feedback lasing in thermally imprinted phase‐stabilized CsPbI3 thin films. Adv Funct Mater, 34, 2405976(2024).

    [23] I Allegro, V Bonal, ER Mamleyev et al. Distributed feedback lasers by thermal nanoimprint of perovskites using gelatin gratings. ACS Appl Mater Interfaces, 15, 8436-8445(2023).

    [24] Q Wang, ETF Rogers, B Gholipour et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photonics, 10, 60-65(2016).

    [25] SJ Zhang, XY Chen, K Liu et al. Nonvolatile reconfigurable terahertz wave modulator. PhotoniX, 3, 7(2022).

    [26] LB Mao, Y Li, GX Li et al. Reversible switching of electromagnetically induced transparency in phase change metasurfaces. Adv Photonics, 2, 056004(2020).

    [27] T Cao, M Lian, XY Chen et al. Multi-cycle reconfigurable THz extraordinary optical transmission using chalcogenide metamaterials. Opto-Electron Sci, 1, 210010(2022).

    [28] K Liu, ZY Lin, B Han et al. Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators. Opto-Electron Adv, 7, 230033(2024).

    [29] ZH Zhu, PG Evans, RF Jr Haglund et al. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett, 17, 4881-4885(2017).

    [30] R Yuan, PJ Tiw, L Cai et al. A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface. Nat Commun, 14, 3695(2023).

    [31] AM Shaltout, VM Shalaev, ML Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [32] HB Zhang, YZ Hu, W Wen et al. Room-temperature continuous-wave vertical-cavity surface-emitting lasers based on 2D layered organic–inorganic hybrid perovskites. APL Mater, 9, 071106(2021).

    [33] Y Zhan, C Li, ZG Che et al. Light management using photonic structures towards high-index perovskite optoelectronics: fundamentals, designing, and applications. Energy Environ Sci, 16, 4135-4163(2023).

    [34] XY Chin, D Cortecchia, J Yin et al. Lead iodide perovskite light-emitting field-effect transistor. Nat Commun, 6, 7383(2015).

    [35] GC Xing, N Mathews, SS Lim et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 13, 476-480(2014).

    [36] SV Makarov, V Milichko, EV Ushakova et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics, 4, 728-735(2017).

    [37] V Caligiuri, S Siprova, N Godbert et al. Enhanced spontaneous emission through high‐k modes in CsPbBr3 perovskite hyperbolic metamaterials. Laser Photonics Rev, 18, 2301156(2024).

    [38] B Gholipour, G Adamo, D Cortecchia et al. Organometallic perovskite metasurfaces. Adv Mater, 29, 1604268(2017).

    [39] YS Gao, C Huang, CL Hao et al. Lead halide perovskite nanostructures for dynamic color display. ACS Nano, 12, 8847-8854(2018).

    [40] YB Fan, YH Wang, N Zhang et al. Resonance-enhanced three-photon luminesce via lead halide perovskite metasurfaces for optical encoding. Nat Commun, 10, 2085(2019).

    [41] D Xing, CC Lin, YL Ho et al. Ligand engineering and recrystallization of perovskite quantum‐dot thin film for low‐threshold plasmonic lattice laser. Small, 18, 2204070(2022).

    [42] SH Huang, ZX Shen, Y Liao et al. Water‐resistant subwavelength perovskite lasing from transparent silica‐based nanocavity. Adv Mater, 35, 2306102(2023).

    [43] ZZ Liu, MC Hu, J Du et al. Subwavelength-polarized quasi-two-dimensional perovskite single-mode nanolaser. ACS Nano, 15, 6900-6908(2021).

    [44] ZW Ma, Z Liu, SY Lu et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nat Commun, 9, 4506(2018).

    [45] YT Wang, X Quintana, J Kim et al. Phase segregation in inorganic mixed-halide perovskites: from phenomena to mechanisms. Photonics Res, 8, A56-A71(2020).

    [46] B Sun, XF Liu, XY Li et al. Reversible thermochromism and strong ferromagnetism in two‐dimensional hybrid perovskites. Angew Chem Int Ed, 59, 203-208(2020).

    [47] YJ Jiang, AM Soufiani, A Gentle et al. Temperature dependent optical properties of CH3NH3PbI3 perovskite by spectroscopic ellipsometry. Appl Phys Lett, 108, 061905(2016).

    [48] JC Blancon, J Even, CC Stoumpos et al. Semiconductor physics of organic–inorganic 2D halide perovskites. Nat Nanotechnol, 15, 969-985(2020).

    [49] LX Zhang, LY Mei, KY Wang et al. Advances in the application of perovskite materials. Nano-Micro Lett, 15, 177(2023).

    [50] M Yonemura. Wavelength-change characteristics of semiconductor lasers and their application to holographic contouring. Opt Lett, 10, 1-3(1985).

    [51] WG Kong, ZY Ye, Z Qi et al. Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3. Phys Chem Chem Phys, 17, 16405-16411(2015).

    [52] S Yakunin, L Protesescu, F Krieg et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun, 6, 8056(2015).

    [53] C Dang, J Lee, C Breen et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat Nanotechnol, 7, 335-339(2012).

    [54] XH Li, WW Liu, YL Song et al. Two-photon-pumped high-quality, single-mode vertical cavity lasing based on perovskite monocrystalline films. Nano Energy, 68, 104334(2020).

    [55] M Cadelano, V Sarritzu, N Sestu et al. Can trihalide lead perovskites support continuous wave lasing. Adv Opt Mater, 3, 1557-1564(2015).

    [56] YF Jia, RA Kerner, AJ Grede et al. Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator. Nano Lett, 16, 4624-4629(2016).

    [57] RL Milot, GE Eperon, HJ Snaith et al. Temperature‐dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv Funct Mater, 25, 6218-6227(2015).

    [58] GL Whitworth, JR Harwell, DN Miller et al. Nanoimprinted distributed feedback lasers of solution processed hybrid perovskites. Opt Express, 24, 23677-23684(2016).

    [59] YP Fu, HM Zhu, AW Schrader et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett, 16, 1000-1008(2016).

    [60] ZF Shi, F Zhang, JJ Yan et al. Robust frequency-upconversion lasing operated at 400 K from inorganic perovskites microcavity. Nano Res, 15, 492-501(2022).

    [61] XH Cao, SY Xing, RC Lai et al. Low‐threshold, external‐cavity‐free flexible perovskite lasers. Adv Funct Mater, 33, 2211841(2023).

    [62] X Zeng, ZZ Liu, HJ Du et al. Achieving low threshold and high optical gain amplified spontaneous emission in MAPbI3 perovskite films via symmetric waveguide effect. Adv Opt Mater, 10, 2201328(2022).

    [63] GH Li, JX Tao, Z Hou et al. Room‐temperature single‐mode plasmonic perovskite nanolasers with sub‐picosecond pulses. Adv Funct Mater, 34, 2405559(2024).

    [64] ZT Li, J Moon, A Gharajeh et al. Room-temperature continuous-wave operation of organometal halide perovskite lasers. ACS Nano, 12, 10968-10976(2018).

    [65] H Cha, S Bae, M Lee et al. Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain. Appl Phys Lett, 108, 181104(2016).

    [66] ST Chen, C Zhang, J Lee et al. High‐Q, low‐threshold monolithic perovskite thin‐film vertical‐cavity lasers. Adv Mater, 29, 1604781(2017).

    Tools

    Get Citation

    Copy Citation Text

    Rongzi Wang, Ying Su, Hongji Fan, Chengxiang Qi, Shuang Zhang, Tun Cao. Tunable vertical cavity microlasers based on MAPbI3 phase change perovskite[J]. Opto-Electronic Advances, 2025, 8(4): 240220-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Sep. 18, 2024

    Accepted: Jan. 20, 2025

    Published Online: Jul. 14, 2025

    The Author Email: Tun Cao (TCao)

    DOI:10.29026/oea.2025.240220

    Topics