High Power Laser and Particle Beams, Volume. 35, Issue 2, 022001(2023)
Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility
[1] Ryutov D D, Derzon M S, Matzen M K. The physics of fast
[2] Haines M G. A review of the dense
[3] Deeney C, Douglas M R, Spielman R B, et al. Enhancement of X-ray power from a
[4] Bailey J E, Chandler G A, Mancini R C, et al. Dynamic hohlraum radiation hydrodynamics[J]. Phys Plasmas, 13, 056301(2006).
[5] Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Phys Control Fusion, 49, 591-600(2007).
[6] Gomez M R, Slutz S A, Jennings C A, et al. Performance scaling in magnetized liner inertial fusion experiments[J]. Phys Rev Lett, 125, 155002(2020).
[7] Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Phys Plasmas, 17, 056303(2010).
[8] Slutz S A, Vesey R A. High-gain magnetized inertial fusion[J]. Phys Rev Lett, 108, 025003(2012).
[9] Cuneo M E, Herrmann M C, Sinars D B, et al. Magnetically driven implosions for inertial confinement fusion at Sandia National Laboratories[J]. IEEE Trans Plasma Sci, 40, 3222-3245(2012).
[10] Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Phys Rev Lett, 113, 155003(2014).
[11] Sinars D B, Slutz S A, Herrmann M C, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners[J]. Phys Plasmas, 18, 056301(2011).
[12] Harvey-Thompson A J, Weis M R, Harding E C, et al. Diagnosing and mitigating laser preheat induced mix in MagLIF[J]. Phys Plasmas, 25, 112705(2018).
[13] Harvey-Thompson A J, Geissel M, Jennings C A, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy[J]. Phys Plasmas, 26, 032707(2019).
[14] Knapp P F, Gomez M R, Hansen S B, et al. Origins and effects of mix on magnetized liner inertial fusion target performance[J]. Phys Plasmas, 26, 012704(2019).
[15] Slutz S A, Jennings C A, Awe T J, et al. Auto-magnetizing liners for magnetized inertial fusion[J]. Phys Plasmas, 24, 012704(2017).
[16] Slutz S A, Gomez M R, Hansen S B, et al. Enhancing performance of magnetized liner inertial fusion at the Z facility[J]. Phys Plasmas, 25, 112706(2018).
[17] Stygar W A, Awe T J, Bailey J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments[J]. Phys Rev ST Accel Beams, 18, 110401(2015).
[18] [18] Grabovski E V, Aleksrov V V, Gritsuk A N, et al. Wire array investigation on Angara51 Baikal project[C]Proceedings of 2013 Abstracts IEEE International Conference on Plasma Science. 2013.
[19] Xiao Delong, Sun Shunkai, Xue Chuang, . Numerical studies on the formation process of Z-pinch dynamic hohlraums and key issues of optimizing dynamic hohlraum radiation[J]. Acta Phys Sin, 64, 235203(2015).
[20] Meng Shijian, Hu Qingyuan, Nin Jiaming, et al. Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1[J]. Phys Plasmas, 24, 014505(2017).
[21] Xiao Delong, Ye Fan, Meng Shijian, et al. Preliminary investigation on the radiation transfer in dynamic hohlraums on the PTS facility[J]. Phys Plasmas, 24, 092701(2017).
[22] Huang Xianbin, Ren Xiaodong, Dan Jiakun, et al. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility[J]. Phys Plasmas, 24, 092704(2017).
[23] Xiao Delong, Dai Zihuan, Sun Sunkai, . Numerical studies on dynamics of Z-pinch dynamic hohlraum driven target implosion[J]. Acta Phys Sin, 67, 025203(2018).
[24] Yi Qiang, Guo Hongsheng, Hu Qingyuan, et al. On the bremsstrahlung background of the neutron yield diagnostic in deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums on an 8-MA pulsed power facility[J]. Phys Plasmas, 27, 102709(2020).
[25] Zhao Hailong, Zhang Hengdi, Wang Ganghua, . Design and verification of 1D magnetized linear inertial fusion simulation code[J]. High Power Laser Particle Beams, 29, 072001(2017).
[26] Zhao Hailong, Wang Ganghua, Wang Qiang, . Preliminary exploration of MagLIF concept and feasibility analysis on PTS facility[J]. High Power Laser Particle Beams, 32, 062002(2020).
[27] McBride R D, Slutz S A. A semi-analytic model of magnetized liner inertial fusion[J]. Phys Plasmas, 22, 052708(2015).
[28] McBride R D, Slutz S A, Vesey R A, et al. Exploring magnetized liner inertial fusion with a semi-analytic model[J]. Phys Plasmas, 23, 012705(2016).
[29] Xue Chuang, Ding Ning, Xiao Delong, . Lumped circuit model for the PTS driving Z pinch load implosion[J]. High Power Laser Particle Beams, 28, 125004(2016).
[30] [30] Braginskii S I. Transpt processes in a plasma[M]Leontovich M A. Reviews of Plasma Physics. New Yk: Consultants Bureau, 1965: 249253.
[31] [31] Atzeni S, MeyerterVehn J. Physics of inertial fusion[M]. Shen Baifei, trans. Beijing: Science Press, 2008: 1415
[32] Deng Jianjun, Xie Weiping, Feng Shuping, et al. From concept to reality—a review to the primary test stand and its preliminary application in high energy density physics[J]. Matter Radiat Extremes, 1, 48-58(2016).
[33] Lau Y Y, Zier J C, Rittersdorf I M, et al. Anisotropy and feedthrough in magneto-Rayleigh-Taylor instability[J]. Phys Rev E, 83, 066405(2011).
[34] Wang Xiaoguang, Wang Guanqiong, Sun Shunkai, et al. Scaling of rise time of drive current on development of magneto-Rayleigh–Taylor instabilities for single-shell
Get Citation
Copy Citation Text
Delong Xiao, Xiaoguang Wang, Guanqiong Wang, Chongyang Mao, Shunkai Sun. Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility[J]. High Power Laser and Particle Beams, 2023, 35(2): 022001
Category: Inertial Confinement Fusion Physics and Technology
Received: Aug. 18, 2022
Accepted: Oct. 27, 2022
Published Online: Feb. 16, 2023
The Author Email: