Laser Technology, Volume. 48, Issue 4, 590(2024)
Study of OCT weld depth curve fitting method for laser keyhole welding
[1] [1] XIAO X, LIU X, CHENG M, et al. Towards monitoring laser welding process via a coaxial pyrometer[J]. Journal of Materials Processing Technology, 2020, 277: 116409.
[2] [2] SANDERS P G, LEONG K H, KESKE J S, et al. Real-time monitoring of laser beam welding using infrared weld emissions[J]. Journal of Laser Applications, Laser Institute of America, 1998, 10(5): 205-211.
[3] [3] WANG L, MOHAMMADPOUR M, GAO X, et al. Adjustable ring mode (ARM) laser welding of stainless steels[J]. Optics and Lasers in Engineering, 2021, 137: 106360.
[5] [5] FAN X, GAO X, LIU G, et al. Research and prospect of welding monitoring technology based on machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(11/12): 3365-3391.
[6] [6] ZHANG X, TANG Z, WU Y, et al. Progress in in situ X-ray imaging of welding process[J]. Review of Scientific Instruments, Melville: AIP Publishing, 2022, 93(7): 071501.
[7] [7] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.
[8] [8] DUPRIEZ N D, DENKL A. Advances of OCT technology for laser beam processing: Precision and quality during laser welding[J]. Laser Technik Journal, 2017, 14(4): 34-38.
[10] [10] MIYAGI M, KAWAHITO Y, KAWAKAMI H, et al. Dynamics of solid-liquid interface and porosity formation determined through X-ray phase-contrast in laser welding of pure Al[J]. Journal of Materials Processing Technology, 2017, 250: 9-15.
[11] [11] LOHAUS L, BAUTZE T, DIEPOLD K. Evaluation of optical sensors for laser welding in a technical cognitive environment[C]//International Congress on Applications of Lasers & Electro-Optics. Anaheim, California, USA: Laser Institute of America, 2010: 1541-1546.
[12] [12] BLECHER J J, GALBRAITH C M, van VLACK C, et al. Real time monitoring of laser beam welding keyhole depth by laser interferometry[J]. Science and Technology of Welding and Joining, 2014, 19(7): 560-564.
[13] [13] DORSCH F, HARRER T, HAUG P, et al. Process control using capillary depth measurement[C]// International Congress on Applications of Lasers & Electro-Optics. San Diego, California, USA: Laser Institute of America Press, 2016: 1505.
[16] [16] SOKOLOV M, FRANCIOSA P, SUN T, et al. Applying optical coherence tomography for weld depth monitoring in remote laser welding of automotive battery tab connectors[J]. Journal of Laser Applications, Laser Institute of America, 2021, 33(1): 012028.
[17] [17] DUIN R, HARINGA H, ZEELEN R. Fast percentile filtering[J]. Pattern Recognition Letters, 1986, 4(4): 269-272.
[18] [18] BOLEY M, FETZER F, WEBER R, et al. Statistical evaluation method to determine the laser welding depth by optical coherence tomography[J]. Optics and Lasers in Engineering, 2019, 119: 56-64.
[19] [19] MITTELSTáDT C, MATTULAT T, SEEFELD T, et al. Novel approach for weld depth determination using optical coherence tomography measurement in laser deep penetration welding of aluminum and steel[J]. Journal of Laser Applications, 2019, 31(2): 022007.
[20] [20] SCHMOELLER M, STADTER C, LIEBL S, et al. Inline weld depth measurement for high brilliance laser beam sources using optical coherence tomography[J]. Journal of Laser Applications, Laser Institute of America, 2019, 31(2): 022409.
Get Citation
Copy Citation Text
HUANG Yiwei, GAO Xiangdong, LI Laiming, MA Bo, ZHANG Yanxi. Study of OCT weld depth curve fitting method for laser keyhole welding[J]. Laser Technology, 2024, 48(4): 590
Category:
Received: Jul. 4, 2023
Accepted: Dec. 2, 2024
Published Online: Dec. 2, 2024
The Author Email: GAO Xiangdong (gaoxd@gdut.edu.cn)