Chinese Journal of Lasers, Volume. 43, Issue 9, 902006(2016)
B-Doped Nano-Si-Paste by Picosecond Laser Cladding
[1] [1] Green M A. The passivated emitter and rear cell (PERC): From conception to mass production[J]. Progress in Photovoltaics Research & Applications, 2015, 143: 190-197.
[2] [2] Kim M, Kim D, Kim D, et al. Analysis of laser-induced damage during laser ablation process using picosecond pulse width laser to fabricate highly efficient PERC cells[J]. Solar Energy, 2014, 108: 101-106.
[3] [3] Lin D, Abbott M, Lu P H, et al. Incorporation of deep laser doping to form the rear localized back surface field in high efficiency solar cells[J]. Solar Energy Materials & Solar Cells, 2014, 130: 83-90.
[4] [4] Wang Chunmei. Study on boron diffused silicon wafers[D]. Tianjin: Tianjin University, 2008: 13-16.
[5] [5] Kluska S, Granek F. High-efficiency silicon solar cells with boron local back surface fields formed by laser chemical processing[J]. IEEE Electron Device Letters, 2011, 32(9): 1257-1259.
[6] [6] Das A, Kim D S, Nakayashiki K, et al. Boron diffusion with boric acid for high efficiency silicon solar cells[J]. Journal of the Electrochemical Society, 2010, 157(6): 684-687.
[7] [7] Vinodkumar M, Korot K, Limbachiya C, et al. Screening-corrected electron impact total and ionization cross sections for boron trifluoride (BF3) and boron trichloride (BCl3)[J]. Journal of Physics B, 2008, 41(24): 245202.
[8] [8] Kim M, Kim D, Kim D, et al. Impact of laser pulse width on laser ablation process of high performance PERC cells[J]. Solar Energy, 2014, 110: 208-213.
[10] [10] Wang Kefu, Zhang Qiuhui. The ablation microstructures of mono crystalline silicon by high power nanosecond laser[J]. Laser Journal, 2012, 33(5): 36-37.
[11] [11] Bhr M, Heinrich G, Stolberg K P, et al. Ablation of dielectrics without substrate damage using ultra-short-pulse laser systems[C]. Proceedings of the 25th EUPVSEC, Valencia, 2010: 2490-2496.
[12] [12] Yang Huan, Huang Shan, Duan Jun, et al. Contrastive study on laser ablation of single-crystal silicon by 1030 nm femtosecond laser and 355 nm nanosecond laser[J]. Chinese J Lasers, 2013, 40(1): 0103003.
[14] [14] Hou Min. Study of micromachining on silicon using short and ultrashort laser pulse[D]. Tianjin: Tianjin University, 2008: 9-22.
[15] [15] Goldstein A N. The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors[J]. Applied Physics A, 1996, 62(1): 33-37.
[16] [16] Dong Shiyun, Ma Yunzhe, Xu Binshi, et al. Current status of material for laser cladding[J]. Materials Review, 2006, 20(6): 5-9.
[17] [17] Hong J, Wang W, Shi B, et al. Screen-printed Si paste for localized B doping in a back surface field[J]. IEEE Electron Device Letters, 2015, 36(1): 8-10.
[18] [18] Liu Qiang, Li Yangcong, Zhou Xin, et al. Study the relationship characteristic between laser′ s signal pulse energy and skeleton in experiment[J]. Laser Journal, 2009, 30(1): 20-21.
Get Citation
Copy Citation Text
Hong Juan, Xuan Rongwei, Huang Haibing, Huang Yinhui, Wang Wei. B-Doped Nano-Si-Paste by Picosecond Laser Cladding[J]. Chinese Journal of Lasers, 2016, 43(9): 902006
Category: laser manufacturing
Received: Apr. 16, 2016
Accepted: --
Published Online: May. 25, 2018
The Author Email: Juan Hong (jameshong@ycit.cn)