Laser & Optoelectronics Progress, Volume. 57, Issue 18, 181007(2020)

Person Re-Identification Based on Squeeze and Excitation Residual Neural Network and Feature Fusion

Ke Wu1, Baohua Zhang1、*, Xiaoqi Lü2, Yu Gu1, Yueming Wang1, Xin Liu1, Yan Ren1, Jianjun Li1, and Ming Zhang1
Author Affiliations
  • 1School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 0 14010, China
  • 2College of Information Engineering, Inner Mongolia University of Technology, Huhehot, Inner Mongolia 0 10080, China
  • show less
    Figures & Tables(9)
    Modules of SE-ResNet and ResNet
    Activation functions of ReLU and Leaky ReLU. (a) ReLU; (b) Leaky ReLU
    Structure diagram of SE-ResNet
    Effect diagram of improved SE-ResNet pedestrian re-identification algorithm
    Partial pedestrian images in two datasets. (a) DukeMTMC-reID dataset; (b) MarKet-1501 dataset
    Rank-k and mAPs at different fusion schemes. (a) Rank-k; (b) mAP
    • Table 1. Experimental results of different convolution sizes

      View table

      Table 1. Experimental results of different convolution sizes

      Convolution kernel sizeRank-1 /%Rank-5 /%Rank-10 /%mAP /%Running time /s
      3×391.6095.6096.4087.801316
      5×592.1095.4096.3087.901807
      7×793.1096.0097.0089.001983
      9×991.7495.7297.0087.5912273
      11×1191.7495.7297.0087.5914146
    • Table 2. Performance comparison of different algorithms (Market-1501 dataset)unit: %

      View table

      Table 2. Performance comparison of different algorithms (Market-1501 dataset)unit: %

      AlgorithmRank-1Rank-5Rank-10mAP
      DenseNet-121[13]90.1794.5096.0874.02
      PCB[14]92.6493.3794.9577.47
      ResNet5088.8494.8496.6271.59
      SE-ResNet(before fusion)88.5393.2894.8982.25
      SE-ResNet(after fusion)93.1096.0097.0089.00
    • Table 3. Performance comparison of different algorithms (DukeMTMC-reID dataset) unit: %

      View table

      Table 3. Performance comparison of different algorithms (DukeMTMC-reID dataset) unit: %

      AlgorithmRank-1Rank-5Rank-10mAP
      PCB85.6891.4793.4980.68
      DenseNet-12180.0288.8691.7463.63
      ResNet5085.5991.3892.2680.65
      SE-ResNet(before fusion)57.9469.7074.5946.75
      SE-ResNet(after fusion)86.0091.4294.0381.24
    Tools

    Get Citation

    Copy Citation Text

    Ke Wu, Baohua Zhang, Xiaoqi Lü, Yu Gu, Yueming Wang, Xin Liu, Yan Ren, Jianjun Li, Ming Zhang. Person Re-Identification Based on Squeeze and Excitation Residual Neural Network and Feature Fusion[J]. Laser & Optoelectronics Progress, 2020, 57(18): 181007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Dec. 24, 2019

    Accepted: Feb. 10, 2020

    Published Online: Sep. 2, 2020

    The Author Email: Baohua Zhang (zbh_wj2004@imust.cn)

    DOI:10.3788/LOP57.181007

    Topics