Electronics Optics & Control, Volume. 32, Issue 6, 63(2025)
Hyperspectral Anomaly Detection Based on Taylor Decomposition and Adaptive Window Eccentric Contrast
[1] [1] ZHAO D, CAO J L, ZHU X G, et al. Hyperspectral video target tracking based on deep edge convolution feature and improved context filter[J]. Remote Sensing, 2022, 14(24): 6219.
[2] [2] ZHAO D, ZHU X G, ZHANG Z, et al. Hyperspectral video target tracking based on pixel-wise spectral matching reduction and deep spectral cascading texture features[J]. Signal Processing, 2023, 209: 109033.
[3] [3] ZHAO D, ZHOU L, LI Y, et al. Visibility estimation via near-infrared bispectral real-time imaging in bad weather[J]. Infrared Physics & Technology, 2024, 136: 105008.
[4] [4] LI Z, ZHANG Y, ZHANG J P. Hyperspectral anomaly detection for spectral anomaly targets via spatial and spectral constraints[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5511515.
[5] [5] FRONTERA-PONS J, VEGANZONES M A, PASCAL F, et al. Hyperspectral anomaly detectors using robust estimators[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(2): 720-731.
[6] [6] CHANG C I. Hyperspectral anomaly detection: a dual theory of hyperspectral target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5511720.
[7] [7] HORSTRAND P, DAZ M, GUERRA R, et al. A novel hyperspectral anomaly detection algorithm for real-time applications with push-broom sensors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12): 4787-4797.
[8] [8] REED I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(10): 1760-1770.
[9] [9] MOLERO J M, GARZON E M, GARCIA I, et al. Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 801-814.
[10] [10] CARLOTTO M J. A cluster-based approach for detecting man-made objects and changes in imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2): 374-387.
[11] [11] KWON H, NASRABADI N M. Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2): 388-397.
[12] [12] ZHOU J, KWAN C, AYHAN B, et al. A novel cluster kernel RX algorithm for anomaly and change detection using hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11): 6497-6504.
[13] [13] ZHANG Y X, DU B, ZHANG L P, et al. A low-rank and sparse matrix decomposition-based Mahalanobis distance method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1376-1389.
[14] [14] LI W, DU Q. Collaborative representation for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1463-1474.
[15] [15] WU Z Y, SU H J, TAO X W, et al. Hyperspectral anomaly detection with relaxed collaborative representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5533417.
[16] [16] CHENG T K, WANG B. Graph and total variation regularized low-rank representation for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 391-406.
[17] [17] GUO T, HE L, LUO F L, et al. Anomaly detection of hyperspectral image with hierarchical antinoise mutual-incoherence-induced low-rank representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5510213.
[19] [19] MONTAVON G, LAPUSCHKIN S, BINDER A, et al. Explaining nonlinear classification decisions with deep Taylor decomposition[J]. Pattern Recognition, 2017, 65: 211-222.
[20] [20] ZHANG J J, XU X C, YAN W M, et al. Hyperspectral anomaly detection based on local contrast estimation and sub-block background estimation[J]. Infrared Physics & Technology, 2023, 135: 104966.
[21] [21] KANG X D, ZHANG X P, LI S T, et al. Hyperspectral anomaly detection with attribute and edge-preserving filters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5600-5611.
[22] [22] LU X Q, ZHANG W X, HUANG J. Exploiting embedding manifold of autoencoders for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1527-1537.
Get Citation
Copy Citation Text
WANG Qing, YAN Weiming, YOU Mingtao, WANG Yian, ZHANG Jiajia, ZHAO Dong. Hyperspectral Anomaly Detection Based on Taylor Decomposition and Adaptive Window Eccentric Contrast[J]. Electronics Optics & Control, 2025, 32(6): 63
Category:
Received: May. 17, 2024
Accepted: Jun. 12, 2025
Published Online: Jun. 12, 2025
The Author Email: