Chinese Journal of Lasers, Volume. 47, Issue 11, 1104004(2020)

Detection Method Using FBG Sensing Signal to Diagnose Rolling Bearing Fault

Chen Yong1、*, An Wangyue1, Liu Huanlin2, and Chen Yawu1
Author Affiliations
  • 1Key Laboratory of Industrial Internet of Things & Network Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 2Key Laboratory of Optical Fiber Communication Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • show less
    Figures & Tables(14)
    Improved CNN structure
    Flowchart of decoupling classification algorithm
    Fault diagnose process
    FBG bearing failure detection experimental platform. (a) Bearing fault detection platform; (b) FBG installation location
    Different faulty bearings. (a) Outer fault; (b) inner fault; (c) roller fault; (d) outer & inner fault; (e) outer & roller fault; (f) inner & roller fault
    Flowchart of rolling bearing fault diagnosis
    Time-domain signal diagrams of different faulty bearings. (a) Normal; (b) outer fault; (c) inner fault; (d) roller fault; (e) outer & inner fault; (f) outer & roller fault; (g) inner & roller fault
    IMF component in outer fault
    Schematic of IMF combined into a matrix
    Multi-class confusion matrix of different methods. (a) Traditional convolutional neural network; (b) proposed method
    • Table 1. Parameters of 6203 bearing

      View table

      Table 1. Parameters of 6203 bearing

      ParameterInside diameter /mmOutside diameter /mmWidth /mmWeight /kgNumber of balls
      Value1740120.0658
    • Table 2. Numerical table of evaluation indicators under outer fault

      View table

      Table 2. Numerical table of evaluation indicators under outer fault

      IndicatorIMF1IMF2IMF3IMF4IMF5IMF6Mean value
      CPearson0.01860.83620.8148-0.0019-0.02350.00280.2745
      K33.10201.36981.31604.31584.14481.85711.6594
      Cindex0.61571.14541.0723-0.0082-0.09740.00520.4555
    • Table 3. Numerical table of comprehensive evaluation indicator of each components under other faults

      View table

      Table 3. Numerical table of comprehensive evaluation indicator of each components under other faults

      Fault typeIMF1IMF2IMF3IMF4IMF5IMF6Mean value
      Inner fault0.52241.09621.1458-0.00790.0529-0.00360.4676
      Roller fault0.63911.20170.8473-0.01980.07530.00450.4580
      Outer & inner fault0.57361.01450.94340.0028-0.09740.00560.4071
      Outer & roller fault0.64191.12561.05930.1064-0.06320.01300.4805
      Inner & roller fault0.71501.01270.87230.0974-0.01520.00430.4478
    • Table 4. Size of each layer of improved convolutional neural network

      View table

      Table 4. Size of each layer of improved convolutional neural network

      Layer nameSize
      Input4096×3×1
      Conv1256×3×1
      Pool1128×3×1
      Conv2128×3×1
      Pool264×3×1
      Epoch20
      Batch size64
    Tools

    Get Citation

    Copy Citation Text

    Chen Yong, An Wangyue, Liu Huanlin, Chen Yawu. Detection Method Using FBG Sensing Signal to Diagnose Rolling Bearing Fault[J]. Chinese Journal of Lasers, 2020, 47(11): 1104004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Measurement and metrology

    Received: May. 14, 2020

    Accepted: --

    Published Online: Nov. 2, 2020

    The Author Email: Chen Yong (chenyong@cqupt.edu.cn)

    DOI:10.3788/CJL202047.1104004

    Topics