Laser & Infrared, Volume. 55, Issue 3, 472(2025)

Research progress of terahertz wave coating detection technology

SHI Xiang, WANG Miao-miao, and CHEN Jian
Author Affiliations
  • School of Computer Science and Information Engineering, Changzhou Institute of Technology, Changzhou 213032, China
  • show less
    References(50)

    [1] [1] Risacher C, Gsten R, Stutzki J, et al. First supra-THz heterodyne array receivers for astronomy with the SOFIA observatory[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(2): 199-211.

    [2] [2] Uzawa Y. The development of superconducting receivers for the atacama large millimeter/submillimeter array (ALMA)[J]. Oyo Buturi, 2014, 83(8): 644-650.

    [4] [4] Naftaly M, Vieweg N, Deninger A. Industrial applications of terahertz sensing: state of play[J]. Sensors, 2019, 19(19): 4203.

    [5] [5] Fu X, Liu Y, Chen Q, et al. Applications of terahertz spectroscopy in the detection and recognition of substances[J]. Frontiers of Physics, 2022, 10: 869537.

    [6] [6] Song H J, Lee N. Terahertz communications: challenges in the next decade[J]. IEEE Transactions on Terahertz Science and Technology, 2022, 12(2): 105-117.

    [8] [8] Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for security applications-explosives, weapons and drugs[J]. Semiconductor Science and Technology, 2005, 20(7): 266-280.

    [9] [9] Choi K, Hong T, Sim K I, et al. Reflection terahertz time-domain spectroscopy of RDX and HMX explosives[J]. Journal Of Applied Physics, 2014, 115(2): 18.

    [10] [10] Tzydynzhapov G, Gusikhin P, Muravev V, et al. New real-time sub-terahertz security body scanner[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41(6): 632-641.

    [11] [11] Yang X, Zhao X, Yang K, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10): 810-824.

    [12] [12] Gong A, Qiu Y, Chen X, et al. Biomedical applications of terahertz technology[J]. Applied Spectroscopy Reviews, 2020, 55(5): 418-438.

    [13] [13] Ge L N, Zhan H L, Leng W X, et al. Optical characterization of the principal hydrocarbon components in natural gas using terahertz spectroscopy[J]. Energy Fuels, 2015, 29(3): 1622-1627.

    [14] [14] Leng W, Zhan H, Ge L, et al. Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy[J]. Fuel, 2015, 159: 84-88.

    [15] [15] He D, Kusano M, Watanabe M. Detecting the defects of warm-sprayed Ti-6Al-4V coating using Eddy current testing method[J]. NDT & E International, 2022, 125: 102565.

    [16] [16] Lysenko I, Kuts Y, Uchanin V, et al. Evaluation of Eddy current array performance in detecting aircraft component defects[J]. Transactions on Aerospace Research, 2024, (2): 1-9.

    [17] [17] Hong X, Huang L, Gong S, et al. Shedding damage detection of metal underwater pipeline external anticorrosive coating by ultrasonic imaging based on HOG + SVM[J]. Journal of Marine Science and Engineering, 2021, 9, 364.

    [18] [18] Ma Z, Sun L, Chen Y, et al. Ultrasonic prediction of thermal barrier coating porosity through multiscale-characteristic-based Gaussian process regression algorithm[J]. Applied Acoustics, 2022, 195: 1-11.

    [20] [20] Shi L, Long Y, Wang Y, et al. Online nondestructive evaluation of TBC crack using infrared thermography[J]. Measurement Science and Technology, 2021, 32(11): 115008.

    [21] [21] Sezer H K, Li L, Wu Z, et al. Non-destructive microwave evaluation of TBC delamination induced by acute angle laser drilling[J]. Measurement Science & Technology, 2006, 18(1): 167.

    [22] [22] Witte M. Measurement of coating thickness with X-ray diffraction[J]. Powder Diffraction, 2023, 38(2): 112-118.

    [23] [23] Fan S, Jeong K, Wallace V P, et al. Use of terahertz waves to monitor moisture content in high-pressure natural gas pipelines[J]. Energy Fuels, 2019, 33(9): 8026-8031.

    [24] [24] Lee E, Nellen S, Kohlhaas R B, et al. Terahertz non-destructive testing technology for industrial applications[J]. Electronics and Telecommunications Trends, 2018, 33(3): 59-69.

    [25] [25] Fukuchi T, Ozeki T, Okada M, et al. Nondestructive inspection of thermal barrier coating of gas turbine high temperature components[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2016, 11(4): 391-400.

    [26] [26] Burger R, Frisch J, Hbner M, Goldammer M, et al. THz-TDS reflection measurement of coating thicknesses at non-perpendicular incidence: experiment and simulation[J]. Sensors, 2021, 21(10): 3473.

    [27] [27] Krimi S, Klier J, Jonuscheit J, et al. Highly accurate thickness measurement of multilayered automotive paints using terahertz technology[J]. Applied Physics Letters, 2016, 109(2): 021105.

    [28] [28] Hernandez S A I, Castro C E. Determination of automobile paint thickness using non-contact THz-TDS technique[C]//40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, China, 2015.

    [29] [29] Yasui T, Yasuda T, Sawanaka K, et al. Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film[J]. Applied Optics, 2005, 44(32): 6849-6856.

    [30] [30] Yasuda T, Iwata T, Araki T, et al. Improvement of minimum paint film thickness for THz paint meters by multiple-regression analysis[J]. Applied Optics, 2007, 46(30): 7518-7526.

    [31] [31] Su K, Shen Y C, Zeitler J A. Terahertz sensor for noncontact thickness and quality measurement of automobile paints of varying complexity[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 432-439.

    [32] [32] Dong Y, Zhang J, Shen Y, et al. Non-destructive characterization of automobile car paints using terahertz pulsed imaging and infrared optical coherence tomography[C]//40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, China, 2015.

    [33] [33] Kim S K, Jung J A. Terahertz scanning techniques for paint thickness on CFRP composite solid laminates[J]. Journal of Mechanical Science and Technology, 2016, 30(10): 4413-4416.

    [34] [34] Kim S K, Hsu D K, Jung J A. Coating thickness characterization of composite materials using terahertz waves[J]. Materials Science Forum, 2017, 878: 70-73.

    [35] [35] Liebelt L, Weber S, Klier J, et al. Influence of bandwidth and dynamic range on thickness determination using terahertz time-domain spectroscopy[C]//44th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Paris, France, 2019.

    [36] [36] Chady T, Lopato P, Szymanik B, Terahertz and thermal testing of glass-fiber reinforced composites with impact damages[J]. Journal of Sensors, 2012, (4-9): 276-283.

    [37] [37] Iwata T, Yoshioka S, Nakamura S, et al. Prediction of the thickness of a thin paint film by applying a modified partial-least-squares-1 method to data obtained in terahertz reflectometry[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34(10): 646-659.

    [38] [38] Choi J, Kwon W S, Kim K S, et al. Nondestructive evaluation of multilayered paint films in ambient atmosphere using terahertz reflection spectroscopy[J]. NDT and E International, 2016, 80: 71-76.

    [39] [39] Tu W, Zhong S, Shen Y, et al. Nondestructive testing of marine protective coatings using terahertz waves with stationary wavelet transform[J]. Ocean Engineering, 2016, 111: 582-592.

    [40] [40] Tu W, Zhong S, Shen Y, et al. Neural network based hybrid signal processing approach for resolving thin marine protective coating by terahertz pulsed imaging[J]. Ocean Engineering, 2019, 173: 58-67.

    [41] [41] Luo M, Zhong S, Yao L, et al. Thin thermally grown oxide thickness detection in thermal barrier coatings based on SWT-BP neural network algorithm and terahertz technology[J]. Applied Optics, 2020, 59(13): 4097-4104.

    [42] [42] Tu W, Zhong S, Luo M, et al. Non-destructive evaluation of hidden defects beneath the multilayer organic protective coatings based on terahertz technology[J]. Frontiers in Physics, 2021, 9: 676851.

    [43] [43] Tu W, Zhong S, Zhang Q, et al. Quality evaluation of organic protective paints using terahertz pulse imaging technology based on wavelet packet energy method[J]. Ocean Engineering, 2023, 267.

    [44] [44] Chen C C, Lee D J, Pollock T, et al. Pulsed terahertz reflectometry for health monitoring of ceramic thermal barrier coatings[J]. Optics Express, 2010, 18(4): 3477-3486.

    [45] [45] Fukuchi T, Fuse N, Okada M, et al. Application of terahertz waves to nondestructive testing of thermal barrier coating[C]//The International Conference on Electrical Engineering, Kanazawa, Japan, 2012: 1586-1589.

    [46] [46] Fukuchi T, Fuse N, Okada M, et al. Measurement of refractive index and thickness of topcoat of thermal barrier coating by reflection measurement of terahertz waves[J]. Electronics and Communications in Japan, 2013, 96(12): 37-45.

    [47] [47] Fukuchi T, Fuse N, Okada M, et al. Topcoat thickness measurement of thermal barrier coating of gas turbine blade using terahertz wave[J]. Electrical Engineering in Japan, 2014, 189(1): 1-8.

    [48] [48] Fukuchi T, Ozeki T, Okada M, et al. Nondestructive inspection of thermal barrier coating of gas turbine high temperature components[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2016, 11(4): 391-400.

    [49] [49] Ye D, Wang W, Zhou H, et al. In-situ evaluation of porosity in thermal barrier coatings based on the broadening of terahertz time-domain pulses: Simulation and experimental investigations[J]. Optics Express, 2019, 27(20): 28150-28165.

    [50] [50] Waddie A J, Schemmel P J, Chalk C, et al. Terahertz optical thickness and birefringence measurement for thermal barrier coating defect location[J]. Optics Express, 2020, 28(21): 31535-31552.

    [51] [51] Unnikrishnakurup S, Dash J, Ray S, et al. Nondestructive evaluation of thermal barrier coating thickness degradation using pulsed IR thermography and THz-TDS measurements: a comparative study[J]. NDT & E International: Independent Nondestructive Testing and Evaluation, 2020, 116(1): 102367.

    [52] [52] Luo M, Zhong S, Yao L, et al. Thin thermally grown oxide thickness detection in thermal barrier coatings based on SWT-BP neural network algorithm and terahertz technology[J]. Applied Optics, 2020, 59(13): 4097-4104.

    [55] [55] Zhang Z, Huang Y, Zhong S, et al. Time of flight improved thermally grown oxide thickness measurement with terahertz spectroscopy[J]. Frontiers of Mechanical Engineering, 2022, 17(4): 49.

    Tools

    Get Citation

    Copy Citation Text

    SHI Xiang, WANG Miao-miao, CHEN Jian. Research progress of terahertz wave coating detection technology[J]. Laser & Infrared, 2025, 55(3): 472

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 21, 2024

    Accepted: Apr. 23, 2025

    Published Online: Apr. 23, 2025

    The Author Email:

    DOI:10.3969/j.issn.1001-5078.2025.03.023

    Topics