Laser & Optoelectronics Progress, Volume. 59, Issue 12, 1215006(2022)

Research on Train Key Components Detection Based on Improved RetinaNet

Kai Yang1, Rui Li1、*, Lin Luo1, and Liming Xie2
Author Affiliations
  • 1School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, Sichuan , China
  • 2Chengdu Leading Technology Co., Ltd., Chengdu 610073, Sichuan , China
  • show less
    Figures & Tables(14)
    RetinaNet network structure
    Bottleneck structure
    P6 and P7 layers structure
    RFB module
    PAN module
    Validation results of two networks on PASCAL VOC dataset. (a) mAP; (b) loss curves
    Detection results of RetinaNet
    Detection results of improved method
    • Table 1. Computing environment configuration

      View table

      Table 1. Computing environment configuration

      NameConfiguration
      CPUIntel i5-8300H
      GPUGTX1060,6GB
      SystemWindows10
      Cuda/cuDNN9.0/9.0
      FrameworkPython3/Tensorflow1.4
    • Table 2. Validation results on PASCAL VOC dataset (AP)

      View table

      Table 2. Validation results on PASCAL VOC dataset (AP)

      MethodmAPAeroBikeBirdBoatBottleBusCarCatChairCow
      RetinaNet0.7700.880.840.800.670.500.810.850.930.560.83
      Proposed0.7760.890.840.810.660.520.810.860.940.570.85
      MethodTableDogHorseMbikePersonPlantSheepSofaTrainTV
      RetinaNet0.640.900.830.840.810.520.770.740.890.79
      Proposed0.660.900.850.830.820.520.770.730.890.79
    • Table 3. Key component dataset

      View table

      Table 3. Key component dataset

      CategoryTraining setTesting set
      Objectsm-s ratio /%Objectsm-s ratio /%
      Brake5749123392
      U-lock194949989
      Cotter pin2358810496
      Bolt454273143664
      Hexagonal lock164988797
      Nameplate3396313081
    • Table 4. Influence of different feature layers on detection effect

      View table

      Table 4. Influence of different feature layers on detection effect

      P3、P4、P5、P6、P7P3、P4、P5mAPWeight /MB
      0.952116
      0.951109
    • Table 5. AP comparison between proposed method and RetinaNet

      View table

      Table 5. AP comparison between proposed method and RetinaNet

      ModelmAPBrakeU-lockCotter pinBoltHexagonal lockNameplate
      RetinaNet0.9510.940.980.930.950.970.94
      RetinaNet+RFB0.9580.950.990.950.950.960.95
      Proposed0.9640.950.990.960.950.970.96
    • Table 6. Comparison of detection speed and efficiency of different models

      View table

      Table 6. Comparison of detection speed and efficiency of different models

      MethodmAPInference time /s
      YOLOV30.850.08
      YOLOV40.930.10
      FasterRCNN0.920.25
      FCOS0.890.10
      SSD0.930.10
      RetinaNet0.950.11
      Proposed0.960.12
    Tools

    Get Citation

    Copy Citation Text

    Kai Yang, Rui Li, Lin Luo, Liming Xie. Research on Train Key Components Detection Based on Improved RetinaNet[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1215006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: May. 6, 2021

    Accepted: Jun. 19, 2021

    Published Online: May. 23, 2022

    The Author Email: Rui Li (14781866710@163.com)

    DOI:10.3788/LOP202259.1215006

    Topics