Acta Optica Sinica, Volume. 44, Issue 3, 0314001(2024)
Design and Simulation of Optical Field in Quasi-Two-Dimensional Isotropic Laser Cooling
[1] Lv D S, Ren W, Sun Y et al. Characterization of laser cooling in microgravity via long-term operations in TianGong-2 space lab[J]. National Science Review, 10, nwac180(2023).
[2] Ohmae N, Takamoto M, Takahashi Y et al. Transportable strontium optical lattice clocks operated outside laboratory at the level of 10-18 uncertainty[J]. Advanced Quantum Technologies, 4, 2100015(2021).
[3] Qu Q Z, Wang B, Lü D S et al. Principle and progress of cold atom clock in space[J]. Chinese Journal of Lasers, 42, 0902006(2015).
[4] Yang B, Sun H, Huang C J et al. Cooling and entangling ultracold atoms in optical lattices[J]. Science, 369, 550-553(2020).
[5] Tino G M. Testing gravity with cold atom interferometry: results and prospects[J]. Quantum Science and Technology, 6, 024014(2021).
[6] Liu P, Meng Y L, Wan J Y et al. Scheme for a compact cold-atom clock based on diffuse laser cooling in a cylindrical cavity[J]. Physical Review A, 92, 062101(2015).
[7] Langlois M, De Sarlo L, Holleville D et al. Compact cold-atom clock for onboard timebase: tests in reduced gravity[J]. Physical Review Applied, 10, 064007(2018).
[8] Zhang W Z, Cheng H D, Ma H Y et al. Scheme of stepped slowing Rb atomic beams by isotropic laser light[J]. Acta Optica Sinica, 27, 1366-1370(2007).
[9] Wang Y N, Meng Y L, Wan J Y et al. Optical-plus-microwave pumping in a magnetically insensitive state of cold atoms[J]. Physical Review A, 97, 023421(2018).
[10] Wang X, Sun Y, Liu L. Characterization of isotropic laser cooling for application in quantum sensing[J]. Optics Express, 29, 43435-43444(2021).
[11] Wang X, Sun Y, Liu L. Realizing fast temperature measurement and simulating Maxwell’s demon with nearly nondestructive detection in cold atoms[J]. Photonics Research, 10, 1947(2022).
[12] Esnault F X, Rossetto N, Holleville D et al. HORACE: a compact cold atom clock for Galileo[J]. Advances in Space Research, 47, 854-858(2011).
[13] Zheng B C, Cheng H D, Meng Y L et al. Development of an integrating sphere cold atom clock[J]. Chinese Physics Letters, 30, 123701(2013).
[14] Esnault F X, Holleville D, Rossetto N et al. High-stability compact atomic clock based on isotropic laser cooling[J]. Physical Review A, 82, 033436(2010).
[15] Yu M Y, Meng Y L, Ye M F et al. Development of the integrated integrating sphere cold atom clock[J]. Chinese Physics B, 28, 070602(2019).
[16] Liu P, Cheng H D, Meng Y L et al. Research on phase modulation of Ramsey fringes in integrating sphere cold atom clocks[J]. Chinese Journal of Lasers, 43, 1112001(2016).
[17] Cheng H D, Zhang W Z, Ma H Y et al. Laser cooling of rubidium atoms from background vapor in diffuse light[J]. Physical Review A, 79, 023407(2009).
[18] Wang X C, Cheng H D, Xiao L et al. Measurement of spatial distribution of cold atoms in an integrating sphere[J]. Chinese Physics Letters, 29, 023701(2012).
[19] Wang X C, Cheng H D, Xiao L et al. Laser cooling of rubidium 85 atoms in integrating sphere[J]. Chinese Optics Letters, 10, 080201(2012).
[20] Wang X, Sun Y, Cheng H D et al. Nearly nondestructive thermometry of labeled cold atoms and application to isotropic laser cooling[J]. Physical Review Applied, 14, 024030(2020).
[21] Meng Y L, Cheng H D, Zheng B C et al. Controlling the shape of a cold atom cloud in a cylindrical cavity[J]. Chinese Physics Letters, 30, 063701(2013).
[22] Wan J Y, Wang X, Zhang X et al. Quasi-one-dimensional diffuse laser cooling of atoms[J]. Physical Review A, 105, 033110(2022).
[23] Meng Y L, Cheng H D, Liu P et al. Increasing the cold atom density in an integrating spherical cavity[J]. Physics Letters A, 378, 2034-2037(2014).
[24] Wang X M, Zhou T Z, Zhang C Y et al. The simulation on cylindrical microwave cavity with high efficiency of difuse laser cooling[C], 46-51(2020).
[25] Meng Y L, Zheng B C, Liu P et al. Experiment studies on the diffuse light cooling by using silver plated microwave cavity[J]. Acta Optica Sinica, 34, 0902001(2014).
[26] Meng Y L, Gao Y C, Zheng B C et al. Design for the integration of integrating sphere and microwave cavity[J]. Chinese Journal of Lasers, 41, 0918001(2014).
[27] Sun C M, Zhao F, Zhang Z. Modeling and simulation of space object optical scattering characteristics using TracePro[J]. Acta Photonica Sinica, 43, 1122003(2014).
[29] Crowther B G. Computer modeling of integrating spheres[J]. Applied Optics, 35, 5880-5886(1996).
Get Citation
Copy Citation Text
Xiao Zhang, Xin Wang, Wenli Wang, Yuan Sun, Liang Liu. Design and Simulation of Optical Field in Quasi-Two-Dimensional Isotropic Laser Cooling[J]. Acta Optica Sinica, 2024, 44(3): 0314001
Category: Lasers and Laser Optics
Received: Aug. 9, 2023
Accepted: Oct. 16, 2023
Published Online: Feb. 23, 2024
The Author Email: Liang Liu (liang.liu@siom.ac.cn)
CSTR:32393.14.AOS231382