Journal of Semiconductors, Volume. 42, Issue 11, 112201(2021)
Tailoring molecular termination for thermally stable perovskite solar cells
[1] J H Im, I H Jang, N Pellet et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol, 9, 927(2014).
[2] S Y Sun, T Salim, N Mathews et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ Sci, 7, 399(2014).
[3] Q F Dong, Y J Fang, Y C Shao et al. Electron-hole diffusion lengths > 175
[4] D Shi, V Adinolfi, R Comin et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 347, 519(2015).
[5] S D Stranks, G E Eperon, G Grancini et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342, 341(2013).
[6] N L Chang, A W Yi Ho-Baillie, P A Basore et al. A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules. Prog Photovolt: Res Appl, 25, 390(2017).
[7]
[8] A Kojima, K Teshima, Y Shirai et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050(2009).
[9] H S Kim, C R Lee, J H Im et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2, 591(2012).
[10] H P Zhou, Q Chen, G Li et al. Interface engineering of highly efficient perovskite solar cells. Science, 345, 542(2014).
[11] Q Jiang, Y Zhao, X W Zhang et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 13, 460(2019).
[12] M Jeong, I W Choi, E M Go et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 369, 1615(2020).
[13] W J Yin, T T Shi, Y F Yan. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 104, 063903(2014).
[14] T S Sherkar, C Momblona, L Gil-Escrig et al. Recombination in perovskite solar cells: Significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett, 2, 1214(2017).
[15] M Yavari, M Mazloum-Ardakani, S Gholipour et al. Reducing surface recombination by a poly(4-vinylpyridine) interlayer in perovskite solar cells with high open-circuit voltage and efficiency. ACS Omega, 3, 5038(2018).
[16] J P Correa-Baena, W Tress, K Domanski et al. Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy Environ Sci, 10, 1207(2017).
[17] D Y Son, J W Lee, Y J Choi et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat Energy, 1, 16081(2016).
[18] G Tumen-Ulzii, C J Qin, D Klotz et al. Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells. Adv Mater, 32, 1905035(2020).
[19] T H Liu, Y Y Zhou, Z Li et al. Stable formamidinium-based perovskite solar cells via
[20] R J Sutton, G E Eperon, L Miranda et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater, 6, 1502458(2016).
[21] J W Lee, D H Kim, H S Kim et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater, 5, 1501310(2015).
[22] Y Zhang, S Seo, S Y Lim et al. Achieving reproducible and high-efficiency (> 21%) perovskite solar cells with a presynthesized FAPbI3 powder. ACS Energy Lett, 5, 360(2020).
[23] H Wang, C Zhu, L Liu et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv Mater, 31, 1904408(2019).
[24] S Yang, S S Chen, E Mosconi et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 365, 473(2019).
[25] Z H Zhang, J Li, Z M Fang et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 42, 030501(2021).
[26] Z M Fang, X Y Meng, C T Zuo et al. Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. Sci Bull, 64, 1743(2019).
[27] F Wan, L L Ke, Y B Yuan et al. Passivation with crosslinkable diamine yields 0.1 V non-radiative
[28] M Cheng, C T Zuo, Y Z Wu et al. Charge-transport layer engineering in perovskite solar cells. Sci Bull, 65, 1237(2020).
[29] L F Zhu, Y Z Xu, P P Zhang et al. Investigation on the role of Lewis bases in the ripening process of perovskite films for highly efficient perovskite solar cells. J Mater Chem A, 5, 20874(2017).
[30] Y C Shao, Z G Xiao, C Bi et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun, 5, 5784(2014).
[31] J X Xu, A Buin, A H Ip et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat Commun, 6, 7081(2015).
[32] X P Zheng, B Chen, J Dai et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat Energy, 2, 1(2017).
[33] H R Tan, A Jain, O Voznyy et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355, 722(2017).
[34] A Rajagopal, R J Stoddard, S B Jo et al. Overcoming the photovoltage plateau in large bandgap perovskite photovoltaics. Nano Lett, 18, 3985(2018).
[35] D Yang, X Zhou, R X Yang et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ Sci, 9, 3071(2016).
Get Citation
Copy Citation Text
Xiao Zhang, Sai Ma, Jingbi You, Yang Bai, Qi Chen. Tailoring molecular termination for thermally stable perovskite solar cells[J]. Journal of Semiconductors, 2021, 42(11): 112201
Category: Articles
Received: Apr. 25, 2021
Accepted: --
Published Online: Nov. 12, 2021
The Author Email: