Photonics Research, Volume. 10, Issue 3, 834(2022)

Superior optical Kerr effects induced by two-dimensional excitons

Feng Zhou1,2, Cacere Jelah Nieva2, Dianyuan Fan1, Shunbin Lu1,3、*, and Wei Ji1,2,4、*
Author Affiliations
  • 1SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Institute of Microscale Optoelectronics (IMO), Shenzhen University, Shenzhen 518060, China
  • 2Department of Physics, National University of Singapore, Singapore 117542, Singapore
  • 3e-mail: shunbin_lu@szu.edu.cn
  • 4e-mail: phyjiwei@nus.edu.sg
  • show less
    References(57)

    [1] R. W. Boyd. Nonlinear Optics(2020).

    [2] A. Newell. Nonlinear Optics(2018).

    [3] X. Hu, P. Jiang, C. Ding, H. Yang, Q. Gong. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nat. Photonics, 2, 185-189(2008).

    [4] L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, W. D. Phillips. Four-wave mixing with matter waves. Nature, 398, 218-220(1999).

    [5] K. Inoue, T. Mukai, T. Saitoh. Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier. Appl. Phys. Lett., 51, 1051-1053(1987).

    [6] K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, D. T. H. Tan. Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge. Nat. Commun., 8, 13878(2017).

    [7] T. Brabec, C. Spielmann, P. F. Curley, F. Krausz. Kerr lens mode locking. Opt. Lett., 17, 1292-1294(1992).

    [8] X. Liu, D. Popa, N. Akhmediev. Revealing the transition dynamics from Q switching to mode locking in a soliton laser. Phys. Rev. Lett., 123, 093901(2019).

    [9] M. J. Weber, D. Milam, W. L. Smith. Nonlinear refractive index of glasses and crystals. Opt. Eng., 17, 175463(1978).

    [10] R. Adair, L. L. Chase, S. A. Payne. Nonlinear refractive index of optical crystals. Phys. Rev. B, 39, 3337-3350(1989).

    [11] X. J. Zhang, W. Ji, S. H. Tang. Determination of optical nonlinearities and carrier lifetime in ZnO. J. Opt. Soc. Am. B, 14, 1951-1955(1997).

    [12] M. Sheik-Bahae, D. J. Hagan, E. W. Van Stryland. Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett., 65, 96-99(1990).

    [13] T. Olsen, S. Latini, F. Rasmussen, K. S. Thygesen. Simple screened hydrogen model of excitons in two-dimensional materials. Phys. Rev. Lett., 116, 056401(2016).

    [14] G. Zhang, A. Chaves, S. Huang, F. Wang, Q. Xing, T. Low, H. Yan. Determination of layer-dependent exciton binding energies in few-layer black phosphorus. Sci. Adv., 4, 9977(2018).

    [15] B. Arnaud, S. Lebègue, P. Rabiller, M. Alouani. Huge excitonic effects in layered hexagonal boron nitride. Phys. Rev. Lett., 96, 026402(2006).

    [16] Z. Jiang, Z. Liu, Y. Li, W. Duan. Scaling universality between band gap and exciton binding energy of two-dimensional semiconductors. Phys. Rev. Lett., 118, 266401(2017).

    [17] K. F. Mak, D. Xiao, J. Shan. Light–valley interactions in 2D semiconductors. Nat. Photonics, 12, 451-460(2018).

    [18] C. Trovatello, F. Katsch, N. J. Borys, M. Selig, K. Yao, R. Borrego-Varillas, F. Scotognella, I. Kriegel, A. Yan, A. Zettl, P. J. Schuck, A. Knorr, G. Cerullo, S. Dal Conte. The ultrafast onset of exciton formation in 2D semiconductors. Nat. Commun., 11, 5277(2020).

    [19] A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, Z. Sun. Nonlinear optics: nonlinear optics with 2D layered materials. Adv. Mater., 30, 1870172(2018).

    [20] I. Abdelwahab, P. Dichtl, G. Grinblat, K. Leng, X. Chi, I.-H. Park, M. P. Nielsen, R. F. Oulton, K. P. Loh, S. A. Maier. Giant and tunable optical nonlinearity in single-crystalline 2D Perovskites due to excitonic and plasma effects. Adv. Mater., 31, 1902685(2019).

    [21] N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, J. Wang. Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory. ACS Photon., 5, 1558-1565(2018).

    [22] Y. Yu, Y. Yu, C. Xu, A. Barrette, K. Gundogdu, L. Cao. Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers. Phys. Rev. B, 93, 201111(2016).

    [23] A. Tanaka, N. J. Watkins, Y. Gao. Hot-electron relaxation in the layered semiconductor 2H-MoS2 studied by time-resolved two-photon photoemission spectroscopy. Phys. Rev. B, 67, 113315(2003).

    [24] H. H. Fang, J. Yang, S. Adjokatse, E. Tekelenburg, M. E. Kamminga, H. Duim, J. Ye, G. R. Blake, J. Even, M. A. Loi. Band-edge exciton fine structure and exciton recombination dynamics in single crystals of layered hybrid perovskites. Adv. Funct. Mater., 30, 1907979(2020).

    [25] F. O. Saouma, C. C. Stoumpos, J. Wong, M. G. Kanatzidis, J. I. Jang. Selective enhancement of optical nonlinearity in two-dimensional organic-inorganic lead iodide perovskites. Nat. Commun., 8, 742(2017).

    [26] B. Guo, Q. L. Xiao, S. H. Wang, H. Zhang. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser Photon. Rev., 13, 1800327(2019).

    [27] G. Grinblat, I. Abdelwahab, M. P. Nielsen, P. Dichtl, K. Leng, R. F. Oulton, K. P. Loh, S. A. Maier. Ultrafast all-optical modulation in 2D hybrid perovskites. ACS Nano, 13, 9504-9510(2019).

    [28] F. Zhou, J. H. Kua, S. Lu, W. Ji. Two-photon absorption arises from two-dimensional excitons. Opt. Express, 26, 16093-16101(2018).

    [29] F. Zhou, I. Abdelwahab, K. Leng, K. P. Loh, W. Ji. 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection. Adv. Mater., 31, 1904155(2019).

    [30] T. Neupane, B. Tabibi, F. J. Seo. Spatial self-phase modulation in WS2 and MoS2 atomic layers. Opt. Mater. Express, 10, 831-842(2020).

    [31] K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, J. Wang. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale, 6, 10530-10535(2014).

    [32] X. Zheng, Y. Zhang, R. Chen, Z. Xu, T. Jiang. Z-scan measurement of the nonlinear refractive index of monolayer WS2. Opt. Express, 23, 15616-15623(2015).

    [33] P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, P. M. Ajayan. Nonlinear optical properties and temperature-dependent UV-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets. Adv. Opt. Mater., 3, 828-835(2015).

    [34] X. Zheng, R. Chen, G. Shi, J. Zhang, Z. Xu, T. Jiang. Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements. Opt. Lett., 40, 3480-3483(2015).

    [35] T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B, 88, 045318(2013).

    [36] J. Wang, A. Coillet, O. Demichel, Z. Wang, D. Rego, A. Bouhelier, P. Grelu, B. Cluzel. Saturable plasmonic metasurfaces for laser mode locking. Light Sci. Appl., 9, 50(2020).

    [37] G. Demetriou, H. T. Bookey, F. Biancalana, E. Abraham, Y. Wang, W. Ji, A. K. Kar. Nonlinear optical properties of multilayer graphene in the infrared. Opt. Express, 24, 13033-13043(2016).

    [38] F. Liu, X. Zhao, X. Q. Yan, X. Xin, Z. B. Liu, J. G. Tian. Measuring third-order susceptibility tensor elements of monolayer MoS2 using the optical Kerr effect method. Appl. Phys. Lett., 113, 051901(2018).

    [39] H. Pan, H. Chu, Y. Li, S. Zhao, D. Li. Comprehensive study on the nonlinear optical properties of few-layered MoSe2 nanosheets at 1 μm. J. Alloys Compd., 806, 52-57(2019).

    [40] S. Bikorimana, P. Lama, A. Walser, R. Dorsinville, S. Anghel, A. Mitioglu, A. Micu, L. Kulyuk. Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2. Opt. Express, 24, 20685-20695(2016).

    [41] N. Dong, Y. Li, S. Zhang, N. L. McEvoy, X. Zhang, Y. Cui, L. Zhang, G. S. Duesberg, J. Wang. Dispersion of nonlinear refractive index in layered WS2 and WSe2 semiconductor films induced by two-photon absorption. Opt. Lett., 41, 3936-3939(2016).

    [42] H. C. Woo, J. W. Choi, J. Shin, S. H. Chin, M. H. Ann, C. L. Lee. Temperature-dependent photoluminescence of CH3NH3PbBr3 perovskite quantum dots and bulk counterparts. J. Phys. Chem. Lett., 9, 4066-4074(2018).

    [43] Q. Chen, E. H. Sargent, N. Leclerc, A. J. Attias. Wavelength dependence and figures of merit of ultrafast third-order optical nonlinearity of a conjugated 3, 3′-bipyridine derivative. Appl. Opt., 42, 7235-7241(2003).

    [44] F. Chérioux, A. J. Attias, H. Maillotte. Symmetric and asymmetric conjugated 3, 3′-bipyridine derivatives as a new class of third-order NLO chromophores with an enhanced non-resonant, nonlinear refractive index in the picosecond range. Adv. Funct. Mater., 12, 203-208(2002).

    [45] M. Dinu, F. Quochi, H. Garcia. Third-order nonlinearities in silicon at telecom wavelength. Appl. Phys. Lett., 82, 2954-2956(2003).

    [46] S. J. Wagner, J. Meier, A. S. Helmy, J. S. Aitchison, M. Sorel, D. C. Hutchings. Polarization-dependent nonlinear refraction and two-photon absorption in GaAs/AlAs superlattice waveguides below the half-bandgap. J. Opt. Soc. Am. B, 24, 1557-1563(2007).

    [47] T. K. Fryett, A. Zhan, A. Majumdar. Phase-matched nonlinear optics via patterning layered materials. Opt. Lett., 42, 3586-3589(2017).

    [48] D. Pan, Y. Fu, N. Spitha, Y. Zhao, C. R. Roy, D. J. Morrow, D. D. Kohler, J. C. Wright, S. Jin. Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden-Popper halide perovskites. Nat. Nanotechnol., 16, 159-165(2021).

    [49] F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, K. S. Novoselov. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater., 14, 301-306(2015).

    [50] S. Uryu, H. Ajiki, T. Ando. Excitonic two-photon absorption in semiconducting carbon nanotubes within an effective-mass approximation. Phys. Rev. B, 78, 115414(2008).

    [51] O. B. Aslan, M. Deng, T. F. Heinz. Strain tuning of excitons in monolayer WSe2. Phys. Rev. B, 98, 115308(2018).

    [52] E. Courtade, B. Han, S. Nakhaie, C. Robert, X. Marie, P. Renucci, T. Taniguchi, K. Watanabe, L. Geelhaar, J. M. J. Lopes, B. Urbaszek. Spectrally narrow exciton luminescence from monolayer MoS2 and MoSe2 exfoliated onto epitaxially grown hexagonal BN. Appl. Phys. Lett., 113, 032106(2018).

    [53] A. Segura, L. Artús, R. Cuscó, T. Taniguchi, G. Cassabois, B. Gil. Natural optical anisotropy of h-BN: highest giant birefringence in a bulk crystal through the mid-infrared to ultraviolet range. Phys. Rev. Mater., 2, 024001(2018).

    [54] T. C. Doan, J. Li, J. Y. Lin, H. X. Jiang. Bandgap and exciton binding energies of hexagonal boron nitride probed by photocurrent excitation spectroscopy. Appl. Phys. Lett., 109, 122101(2016).

    [55] X. Wang, S. Lan. Optical properties of black phosphorus. Adv. Opt. Photon., 8, 618-655(2016).

    [56] I. Abdelwahab, G. Grinblat, K. Leng, Y. Li, X. Chi, A. Rusydi, S. A. Maier, K. Ploh. Highly enhanced third-harmonic generation in 2D perovskites at excitonic resonances. ACS Nano, 12, 644-650(2018).

    [57] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    Tools

    Get Citation

    Copy Citation Text

    Feng Zhou, Cacere Jelah Nieva, Dianyuan Fan, Shunbin Lu, Wei Ji, "Superior optical Kerr effects induced by two-dimensional excitons," Photonics Res. 10, 834 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nonlinear Optics

    Received: Oct. 28, 2021

    Accepted: Jan. 24, 2022

    Published Online: Mar. 2, 2022

    The Author Email: Shunbin Lu (shunbin_lu@szu.edu.cn), Wei Ji (phyjiwei@nus.edu.sg)

    DOI:10.1364/PRJ.447029

    Topics