Acta Optica Sinica, Volume. 38, Issue 4, 0411009(2018)
Segmentation of Metallographic Image Based on Improved CV Model Integrated with Local Fitting Term
[1] Xu S, Cao L. Adaptive segmentation method of metal image[J]. Journal of Nanjing University of Aeronautics & Astronautics, 37, 625-628(2005).
[2] Zhang H Q, Wang C G. Study on processing technique in 12Cr1Mov steel’s metalllgraphy image[J]. Journal of Inner Mongolia Agricultural University, 33, 163-168(2012).
[3] Wang B Z, Li F Y, Liu C X et al. Research on segmentation algorithm on metallographic image of polycrystalline material based on image processing technology[J]. Foundry, 64, 1078-1081(2015).
[4] Zhang H J, Wang C G, Yu Z H. Image threshold segmentation based on simulated annealing algorithms in wavelet field[J]. Journal of Inner Mongolia Agricultural University, 29, 161-164(2008).
[5] He W N, Zhang L L. Study on artificial neuronal networks applied on microstructure segmentation from metallographic images[J]. Electronic Design Engineering, 21, 143-147(2013).
[6] Han Z, Li Y X, Zhou Z M et al. Object segmentation based on improved prior shape and CV model[J]. Signal Processing, 27, 1395-1401(2011).
[7] Niu S J. Chen Q, de Sisternes Luis, et al. Robust noise region-based active contour via local similarity factor for image segmentation[J]. Pattern Recognition, 61, 104-119(2017).
[8] Song Y, Wu Y Q, Bi S B. Satellite remote sensing cloud image segmentation using edge corrected CV model[J]. Acta Optica Sinica, 34, 0901004(2014).
[9] Tang L M, Fang Z, Xiang C C et al. An improved Chan-Vese model integrated with L1 fitting term [J]. Journal of Computer-Aided Design and Computer Graphics, 27, 1707-1715(2015).
[10] Chan T F, Vese L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 10, 266-277(2001).
[11] Caselles V, Kimmel R, Sapiro G. Geodesic active contours[J]. International Journal of Computer Vision, 22, 61-79(1997).
[13] Li C M, Kao C Y, Gore J C et al. Implicit active contours driven by local binary fitting energy. [C]∥IEEE Conference on Computer Vision and Pattern Recognition, 1-7(2007).
[16] Zhao F Z, Liang H Y, Wu X L et al. Active contour segmentation model based on local and global Gaussian fitting[J]. Laser & Optoelectronics Progress, 54, 051006(2017).
[17] Xie Z N, Zheng D, Chen J Y et al. A thmor segmentation method of improved Chan-Vese model for liver cancer ablation computed tomography image[J]. Laser & Optoelectronics Progress, 54, 021702(2017).
[18] Wu Y Q, Meng T L. Image threshold selection using two-dimensional reciprocal cross entropy based on decomposition[J]. Journal of Signal Processing, 29, 800-808(2013).
[19] Wu S H, Wu Y Q, Zhou J J. SAR river image segmentation based on reciprocal gray entropy and improved Chan-Vese model[J]. Acta Geodaetica et Cartographica Sinica, 44, 1255-1262(2015).
[20] Hao Z H, Guo M C, Song Y Y. Inhomogeneous image segmentation based on active contours with global and local information[J]. Journal of Image and Graphics, 21, 886-892(2016).
[23] Dietenbeck T, Alessandrini M, Friboulet D et al. A free software for the evaluation of image segmentation algorithms based on level-set. [C]∥Proceedings of the IEEE International Conference on Image Processing, 665-668(2010).
[25] Pan G, Gao L Q, Zhang P. Geodesic active contour based on LBF model[J]. Pattern Recognition and Artificial Intelligence, 26, 1179-1184(2013).
Get Citation
Copy Citation Text
Kang Ni, Yiquan Wu, Song Geng. Segmentation of Metallographic Image Based on Improved CV Model Integrated with Local Fitting Term[J]. Acta Optica Sinica, 2018, 38(4): 0411009
Category: Imaging Systems
Received: Aug. 22, 2017
Accepted: --
Published Online: Jul. 10, 2018
The Author Email: Wu Yiquan (nuaaimage@163.com)