Infrared Technology, Volume. 47, Issue 6, 770(2025)
UV Image Discharge Spot Segmentation for Electrical Equipment Based on Improved U-net
[8] [8] Brito K B, Costa E G, Dias B A, et al. Development of DIP-based algorithm for extraction of UV video attributes from corona discharges on polymeric insulators[J].International Journal of Electrical Power & Energy Systems, 2022,134: 107406.
[18] [18] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//18th International Conference Medical Image Computing and Computer-assisted Intervention–MICCAI, 2015: 234-241.
[19] [19] Karen S, Andrew Z. Very Deep Convolutional Networks for Large-scale Image Recognition[C]//International Conference on Learning Representations. arXiv preprint arXi: 1409.1556, 2015.
[21] [21] Oktay O, Schlemper J, Folgoc LL, et al. Attention U-Net: learning where to look for the pancreas[J]. arXiv preprint arXiv. 2018: 1804.03999.
[22] [22] ZHAO H, SHI J, QI X, et al. Pyramid Scene Parsing Network[C]//2017IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE, 2017: 6230-6239.
[23] [23] CHEN L C, ZHU Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[J/OL]. (2018-08-22)[2022-08-19]. https://arxiv.org/abs/1802.02611.
Get Citation
Copy Citation Text
SHEN Wanke, LI Luojingyi, FANG Chunhua, JIANG Quancai, LU Jiewei, XIA Xingyu, PENG Wanzhao. UV Image Discharge Spot Segmentation for Electrical Equipment Based on Improved U-net[J]. Infrared Technology, 2025, 47(6): 770