Chinese Journal of Lasers, Volume. 48, Issue 11, 1101004(2021)
Algorithm Optimization for Fast Simulation of 3.5 μm Dual-Wavelength Pumped Er∶ZBLAN Fiber Laser
[5] Walsh B M, Lee H R, Barnes N P. Mid infrared lasers for remote sensing applications[J]. Journal of Luminescence, 169, 400-405(2016).
[8] Yao C F. Design and preparation of fluorotellurite glass fibers and their application in mid-infrared supercontinuum generation[D](2018).
[9] Aydın Y O. Development of high-power 3 μm fiber laser sources and components[D](2019).
[10] Shen D Y, Fan D Y. Mid-infrared lasers[M], 152-156(2015).
[11] Faucher D, Bernier M, Androz G et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm[J]. Optics Letters, 36, 1104-1106(2011).
[13] Fortin V, Jobin F, Larose M et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm[J]. Optics Letters, 44, 491-494(2019).
[14] Duval S, Wang Y C et al. Ultrafast mid-infrared fiber lasers beyond 3 μm[C]. //CLEO: Science and Innovations 2019, May 5-10, 2019, San Jose, California. Washington, DC: OSA, SF2L, 1(2019).
[16] Fortin V, Maes F, Bernier M et al. Watt-level erbium-doped all-fiber laser at 3.44 μm[J]. Optics Letters, 41, 559-562(2016).
[17] Schneider J. Fluoridefibre laser operating at 3.9 μm[J]. Electronics Letters, 31, 1250-1251(1995).
[19] Sandrock T, Fischer D, Glas P et al. Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8 μm[J]. Optics Letters, 24, 1284-1286(1999).
[20] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).
[21] Paradis P, Fortin V, Aydin Y O et al. 10 W-level gain-switched all-fiber laser at 2.8 μm[J]. Optics Letters, 43, 3196-3199(2018).
[22] Lü Y, Wei C, Zhang H et al. Wideband tunable passively Q-switched fiber laser at 2.8 μm using a broadband carbon nanotube saturable absorber[J]. Photonics Research, 7, 14-18(2019).
[24] Shen Y L, Wang Y S, Chen H W et al. Wavelength-tunable passively mode-locked mid-infrared Er 3+-doped ZBLAN fiber laser[J]. Scientific Reports, 7, 14913(2017).
[27] Henderson-Sapir O, Jackson S D, Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser[J]. Optics Letters, 41, 1676-1679(2016).
[31] Xie G Q, Qin Z P. Mid-infrared ultrafast lasers based on two-dimension materials[C]. //CLEO Pacific Rim Conference, July 29-August 3, 2018, Hong Kong, China. Washington, DC: OSA, TH2G, 2(2018).
[32] Malouf A, Henderson-Sapir O, Gorjan M et al. Numerical modeling of 3.5 μm dual-wavelength pumped erbium-doped mid-infrared fiber lasers[J]. IEEE Journal of Quantum Electronics, 52, 1-12(2016).
[35] Press W H, Teukolsky S A et al. Numerical recipes in C: the art of scientific computing[M]. 2nd ed, 43-772(2002).
[36] Ou P. MATLAB source program of “higher optical simulation”[M]. 2nd ed, 264-332(2014).
[38] Wei Y. Research on some algebraic inverse eigenvalue problems[D](2015).
[39] Moler C B. Numerical computing with Matlab[M]. Auckland: Society for Industrial and Applied Mathematics, 117-217(2004).
Get Citation
Copy Citation Text
Luo Wang, Chuanfei Yao, Pingxue Li, Xi Zhang, Yongjing Wu, Xuan Wang, Linjing Yang. Algorithm Optimization for Fast Simulation of 3.5 μm Dual-Wavelength Pumped Er∶ZBLAN Fiber Laser[J]. Chinese Journal of Lasers, 2021, 48(11): 1101004
Category: laser devices and laser physics
Received: Nov. 9, 2020
Accepted: Jan. 5, 2021
Published Online: May. 20, 2021
The Author Email: Li Pingxue (pxli@bjut.edu.cn)