Optoelectronic Technology, Volume. 41, Issue 1, 27(2021)
Study on Fabrication and Color Conversion of InP/ZnS Quantum Dots with Adjustable Fluorescence Wavelength
[1] Michalet X, MichaletX, PinaudF F, BentolilaL A, et al, MichaletX, PinaudF F, BentolilaL A, et al, MichaletX, PinaudF F, BentolilaL A, et al, Pinaud F F, Bentolila L A. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 307, 538-544(2005).
[3] Luo Z Y, LuoZ Y, XuD M, WuS T, LuoZ Y, XuD M, WuS T, Xu D M, Wu S T. Emerging quantum-dots-enhanced LCDs[J]. J. Disp. Technol., 10, 526-539(2014).
[4] Speranskaya E S, SperanskayaE S, BeloglazovaN V, LenainP, et al, SperanskayaE S, BeloglazovaN V, LenainP, et al, SperanskayaE S, BeloglazovaN V, LenainP, et al, Beloglazova N V, Lenain P. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay[J]. Biosens. Bioelectron, 53, 225-231(2014).
[6] Chen O, ChenO, ZhaoJ, ChauhanV P, et al, ChenO, ZhaoJ, ChauhanV P, et al, ChenO, ZhaoJ, ChauhanV P, et al, Zhao J, Chauhan V P. Compact high-quality CdSe-CdS core⁃shell nanocrystals with narrow emission linewidths and suppressed blinking[J]. Nat. Mater., 12, 445-451(2013).
[8] Shen W, ShenW, TangH, YangX, et al, ShenW, TangH, YangX, et al, ShenW, TangH, YangX, et al, Tang H, Yang X. Synthesis of highly fluorescent InP/ZnS small-core/thick-shell tetrahedral-shaped quantum dots for blue light-emitting diodes[J]. J. Mater. Chem., 5, 8243-8249(2017).
[9] And D B, AndD B, PengX, Peng X. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent[J]. Nano Lett., 2, 1027-1030(2002).
[10] Brunetti V, BrunettiV, ChibliH, FiammengoR, et al, BrunettiV, ChibliH, FiammengoR, et al, BrunettiV, ChibliH, FiammengoR, et al, Chibli H, Fiammengo R. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment[J]. Nanoscale, 5, 307-317(2013).
[11] Navazi Z R, NavaziZ R, NematiA, AkbariH, et al, NavaziZ R, NematiA, AkbariH, et al, NavaziZ R, NematiA, AkbariH, et al, Nemati A, Akbari H. The effect of fatty amine chain length on synthesis process of InP/ZnS quantum dots[J]. Orient J. Chem., 32, 2163-2169(2016).
[12] Tamang S, TamangS, LincheneauC, HermansY, et al, TamangS, LincheneauC, HermansY, et al, TamangS, LincheneauC, HermansY, et al, Lincheneau C, Hermans Y. Chemistry of InP nanocrystal syntheses[J]. Chem. Mater., 28, 2491-2506(2016).
[13] Haubold S, HauboldS, HaaseM, KornowskiA,et al, HauboldS, HaaseM, KornowskiA,et al, HauboldS, HaaseM, KornowskiA,et al, Haase M, Kornowski A. Strongly luminescent InP/ZnS core⁃shell nanoparticles[J]. Chem. Phys. Chem., 2, 331-334(2001).
[14] Liu Z, LiuZ, KumbharA, XuD, et al, LiuZ, KumbharA, XuD, et al, LiuZ, KumbharA, XuD, et al, Kumbhar A, Xu D. Coreduction colloidal synthesis of III–V nanocrystals: the case of InP[J]. Angew. Chem. Int. Ed., 47, 3540-3542(2008).
[15] Jun K W, JunK W, KhannaP K, HongK B, et al, JunK W, KhannaP K, HongK B, et al, JunK W, KhannaP K, HongK B, et al, Khanna P K, Hong K B. Synthesis of InP nanocrystals from indium chloride and sodium phosphide by solution route[J]. Mater. Chem. Phys., 96, 494-497(2006).
[16] Xie R, XieR, BattagliaD, PengX, et al, XieR, BattagliaD, PengX, et al, XieR, BattagliaD, PengX, et al, Battaglia D, Peng X. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared[J]. J. Am. Chem. Soc., 129, 15432-15433(2007).
[17] Jeong D, JeongD, SeoH W, ByunY T, et al, JeongD, SeoH W, ByunY T, et al, JeongD, SeoH W, ByunY T, et al, Seo H W, Byun Y T. Influence of interface defects on the optical properties of InP/ZnS quantum dots by low temperature synthesis of InP core[J]. Appl. Surf. Sci., 757-760(2019).
[18] Cho E, ChoE, TaehyungK, Seon-MyeongC, et al, ChoE, TaehyungK, Seon-MyeongC, et al, ChoE, TaehyungK, Seon-MyeongC, et al, Taehyung K, Seon-Myeong C. Optical characteristics of the surface defects in InP colloidal quantum dots for highly efficient light-emitting applications[J]. Acs. Appl. Mater. Inter., 1, 7106-7114(2018).
[19] Kim H J, KimH J, ShinM H, LeeJ Y, et al, KimH J, ShinM H, LeeJ Y, et al, KimH J, ShinM H, LeeJ Y, et al, Shin M H, Lee J Y. Realization of 95% of the Rec 2020 color gamut in a highly efficient LCD using a patterned quantum dot film[J]. Optics Express, 25, 10724(2017).
[20] Lin H Y, LinH Y, SherC W, HsiehD H, et al, LinH Y, SherC W, HsiehD H, et al, LinH Y, SherC W, HsiehD H, et al, Sher C W, Hsieh D H. Optical cross-talk reduction in a quantum dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold[J]. Photonics Research, 5, 411-416(2017).
[21] Chen S W H, ChenS W H, HuangY M, SinghK J, et al, ChenS W H, HuangY M, SinghK J, et al, ChenS W H, HuangY M, SinghK J, et al, Huang Y M, Singh K J. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist[J]. Photon Res, 8, 630-636(2020).
[22] Shen W, ShenW, TangH, YangX, et al, ShenW, TangH, YangX, et al, ShenW, TangH, YangX, et al, Tang H, Yang X. Synthesis of highly fluorescent InP/ZnS small-core/thick-shell tetrahedral-shaped quantum dots for blue light-emitting diodes[J]. J. Mater. Chem. C, 5, 8243-8249(2017).
[23] Virieux H, VirieuxH, TroedecM L, CrosgagneuxA, et al, VirieuxH, TroedecM L, CrosgagneuxA, et al, VirieuxH, TroedecM L, CrosgagneuxA, et al, Troedec M L, Crosgagneux A. InP/ZnS nanocrystals: Coupling NMR and XPS for fine surface and interface description[J]. J. Am. Chem. Soc., 134, 19701-19708(2012).
[24] Stein J L, SteinJ L, HoldenW M, VenkateshA, et al, SteinJ L, HoldenW M, VenkateshA, et al, SteinJ L, HoldenW M, VenkateshA, et al, Holden W M, Venkatesh A. Probing surface defects of InP quantum dots using phosphorus Kα and Kβ X-ray emission spectroscopy[J]. Chem. Mater., 30, 6377-6388(2018).
[25] Granada-Ramirez D A, Granada-RamirezD A, Arias-CerónJ S, Gómez-HerreraM L, et al, Granada-RamirezD A, Arias-CerónJ S, Gómez-HerreraM L, et al, Granada-RamirezD A, Arias-CerónJ S, Gómez-HerreraM L, et al, Arias-Cerón J S, Gómez-Herrera M L. Effect of the indium myristate precursor concentration on the structural, optical, chemical surface, and electronic properties of InP quantum dots passivated with ZnS[J]. . Mater. Sci-Mater. El., 30, 4885-4894(2019).
[26] Xue X, XueX, ChenL, ZhaoC, et al, XueX, ChenL, ZhaoC, et al, XueX, ChenL, ZhaoC, et al, Chen L, Zhao C. One-pot synthesis of highly luminescent and color-tunable water-soluble Mn:ZnSe/ZnS core/shell quantum dots by microwave-assisted method[J]. . Mater. Sci-Mater. El., 29, 9184-9192(2018).
Get Citation
Copy Citation Text
Shiyao CHEN, Peiqi CHEN, Yalian WENG, Yan WU, Chaoxing WU, Xiongtu ZHOU, Yongai ZHANG, Tailiang GUO. Study on Fabrication and Color Conversion of InP/ZnS Quantum Dots with Adjustable Fluorescence Wavelength[J]. Optoelectronic Technology, 2021, 41(1): 27
Category: Research and Trial-manufacture
Received: Oct. 20, 2020
Accepted: --
Published Online: Jul. 14, 2021
The Author Email: ZHANG Yongai (yongaizhang@fzu.edu.cn)