Optical Instruments, Volume. 44, Issue 6, 60(2022)
Energy level mechanism of terahertz detection based on cesium Rydberg atoms
[1] ZHOU L, CHEN L, REN G H, et al. Monitoring
[2] LI T, MA H Y, PENG Y, et al. Gaussian numerical analysis and terahertz spectroscopic measurement of homocysteine[J]. Biomedical Optics Express, 9, 5467-5476(2018).
[3] SHEN Y C, UPADHYA P C, LINFIELD E H, et al. Temperature-dependent low-frequency vibrational spectra of purine and adenine[J]. Applied Physics Letters, 82, 2350-2352(2003).
[4] PENG Y, SHI C J, XU M Q, et al. Qualitative and quantitative identification of components in mixture by terahertz spectroscopy[J]. IEEE Transactions on Terahertz Science and Technology, 8, 696-701(2018).
[5] PENG Y, ZHU Y M, GU M, et al. Terahertz spatial sampling with subwavelength accuracy[J]. Light:Science & Applications, 8, 72(2019).
[6] BERRY C W, HASHEMI M R, JARRAHI M. Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas[J]. Applied Physics Letters, 104, 081122(2014).
[7] MATSUURA S, TANI M, SAKAI K. Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas[J]. Applied Physics Letters, 70, 559-561(1997).
[8] PÁLFALVI L, FÜLÖP J A, ALMÁSI G, et al. Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification[J]. Applied Physics Letters, 92, 171107(2008).
[9] YEH K L, HOFFMANN M C, HEBLING J, et al. Generation of 10
[10] COOK D J, HOCHSTRASSER R M. Intense terahertz pulses by four-wave rectification in air[J]. Optics Letters, 25, 1210-1212(2000).
[11] XIE X, DAI J M, ZHANG X C. Coherent control of THz wave generation in ambient air[J]. Physical Review Letters, 96, 075005(2006).
[12] SU H J, LIOU J Y, LIN I C, et al. Optimizing the Rydberg EIT spectrum in a thermal vapor[J]. Optics Express, 30, 1499-1510(2022).
[13] WILSON J T, SASKIN S, MENG Y, et al. Trapping alkaline earth rydberg atoms optical tweezer arrays[J]. Physical Review Letters, 128, 033201(2022).
[14] JAKHAR A, DHYANI V, DAS S. Room temperature terahertz detector based on single silicon nanowire junctionless transistor with high detectivity[J]. Semiconductor Science and Technology, 35, 125020(2020).
[15] ANDERSON D A, MILLER S A, RAITHEL G, et al. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell[J]. Physical Review Applied, 5, 034003(2016).
[16] HOLLOWAY C L, GORDON J A, JEFFERTS S, et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE Transactions on Antennas and Propagation, 62, 6169-6182(2014).
[17] HOLLOWAY C L, SIMONS M T, GORDON J A, et al. Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 59, 717-728(2017).
[18] RAVETS S, LABUHN H, BARREDO D, et al. Coherent dipole–dipole coupling between two single Rydberg atoms at an electrically-tuned Förster resonance[J]. Nature Physics, 10, 914-917(2014).
[19] HOLLOWAY C L, GORDON J A, SCHWARZKOPF A, et al. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 104, 244102(2014).
[20] WADE C G, ŠIBALIĆ N, DE MELO N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 11, 40-43(2017).
[21] DOWNES L A, MACKELLAR A R, WHITING D J, et al. Ultra-high-speed terahertz imaging using atomic vapour[J]. arXiv preprint arXiv:, 01308, 2019(1903).
[22] GORDON J A, HOLLOWAY C L, SCHWARZKOPF A, et al. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms[J]. Applied Physics Letters, 105, 024104(2014).
[23] SANDHYA S N, SHARMA K K. Atomic coherence effects in four-level systems: Doppler-free absorption within an electromagnetically-induced-transparency window[J]. Physical Review A, 55, 2155-2158(1997).
[24] WU X L, LIANG X H, TIAN Y Q, et al. A concise review of Rydberg atom based quantum computation and quantum simulation[J]. Chinese Physics B, 30, 020305(2021).
[25] SIMONS M T, GORDON J A, HOLLOWAY C L. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor[J]. Applied Optics, 57, 6456-6460(2018).
[26] FAN H Q, KUMAR S, SEDLACEK J, et al. Atom based RF electric field sensing[J]. Journal of Physics B:Atomic, Molecular and Optical Physics, 48, 202001(2015).
[27] KUMAR S, FAN H Q, KÜBLER H, et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 25, 8625-8637(2017).
[28] KUMAR S, FAN H Q, KÜBLER H, et al. Atom-based sensing of weak radio frequency electric fields using homodyne readout[J]. Scientific Reports, 7, 42981(2017).
Get Citation
Copy Citation Text
Yanchen ZHOU. Energy level mechanism of terahertz detection based on cesium Rydberg atoms[J]. Optical Instruments, 2022, 44(6): 60
Category: DESIGN AND RESEARCH
Received: Mar. 3, 2022
Accepted: --
Published Online: Jan. 11, 2023
The Author Email: