Acta Laser Biology Sinica, Volume. 33, Issue 5, 470(2024)

Effect of GluA on Growth Development and Butenyl-spinosyn Biosynthesis in Saccharopolyspora pogona

XIA Lun1, ZHU Yan1, WANG Shanrui1, LIU Xirong2, XIA Liqiu1, and RANG Jie1、*
Author Affiliations
  • 1State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Sciences, Hunan Normal University, Changsha 410081, China
  • 2Hunan Norchem Pharmaceutical Co., Ltd., Changsha 410221, China
  • show less
    References(27)

    [1] [1] ZHAO X L, HUSSAIN M H, MOHSIN A, et al. Mechanistic insight for improving butenyl-spinosyn production through combined ARTP/UV mutagenesis and ribosome engineering in Saccharopolyspora pogona[J]. Frontiers in Bioengineering and Biotechnology, 2024, 11: 1329859.

    [2] [2] HUANG K X, XIA L Q, ZHANG Y M, et al. Recent advances in the biochemistry of spinosyns[J]. Applied Microbiology and Biotechnology, 2009, 82(1): 13-23.

    [3] [3] RANG J, HE H C, YUAN S Q, et al. Deciphering the metabolic pathway difference between Saccharopolyspora pogona and Saccharopolyspora spinosa by comparative proteomics and metabonomics[J]. Frontiers in Microbiology, 2020, 11: 396.

    [4] [4] RANG J, CAO L, SHUAI L, et al. Promoting butenyl-spinosyn production based on omics research and metabolic network construction in Saccharopolyspora pogona[J]. Journal of Agricultural and Food Chemistry, 2022, 70(11): 3557-3567.

    [5] [5] LI L, RANG J, HE H C, et al. Impact on strain growth and butenyl-spinosyn biosynthesis by overexpression of polynucleotide phosphorylase gene in Saccharopolyspora pogona[J]. Applied Microbiology and Biotechnology, 2018, 102(18): 8011-8021.

    [6] [6] TANG J L, ZHU Z R, HE H C, et al. Bacterioferritin: a key iron storage modulator that affects strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona[J]. Microbial Cell Factories, 2021, 20(1): 157.

    [7] [7] HE H C, TANG J L, CHEN J M, et al. Flaviolin-like gene cluster deletion optimized the butenyl-spinosyn biosynthesis route in Saccharopolyspora pogona[J]. ACS Synthetic Biology, 2021,10(10): 2740-2752.

    [8] [8] RANG J, LI Y L, CAO L, et al. Deletion of a hybrid NRPST1PKS biosynthetic gene cluster via latour gene knockout system in Saccharopolyspora pogona and its effect on butenyl-spinosyn biosynthesis and growth development[J]. Microbial Biotechnology, 2021, 14(6): 2369-2384.

    [9] [9] TANG J, CHEN J M, LIU Y, et al. The global regulator PhoU positively controls growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona[J]. Frontiers in Microbiology, 2022, 13: 904627.

    [10] [10] HU J, XIA Z, SHUAI L, et al. Effect of pII key nitrogen regulatory gene on strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona[J]. Applied Microbiology and Biotechnology, 2022, 106(8): 3081-3091.

    [11] [11] TANG J L, HE H C, LI Y L, et al. Comparative proteomics reveals the effect of the transcriptional regulator Sp13016 on butenylspinosyn biosynthesis in Saccharopolyspora pogona[J]. Journal of Agricultural and Food Chemistry, 2021, 69(42): 12554-12565.

    [12] [12] RANG J, HE H C, CHEN J M, et al. SenX3-RegX3, an important two-component system, regulates strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona[J]. iScience, 2020, 23(8): 101398.

    [13] [13] SONG C Y, LUAN J, LI R J, et al. RedEx: a method for seamless DNA insertion and deletion in large multimodular polyketide synthase gene clusters[J]. Nucleic Acids Research, 2020, 48(22): e130.

    [14] [14] ZHA J, ZHAO Z, XIAO Z Y, et al. Biosystem design of Corynebacterium glutamicum for bioproduction[J]. Current Opinion in Biotechnology, 2023, 79: 102870.

    [15] [15] HUANG Y J, LIU X T, JIN Y, et al. Transcriptome analysis of the degradation process of organic nitrogen by two heterotrophic nitrifying and aerobic denitrifying bacteria[J]. Archives of Microbiology, 2024, 206(8): 351.

    [16] [16] DU H, FU Y, DENG N, et al. Transcriptional profiling reveals adaptive response and tolerance to lactic acid stress in Pichia kudriavzevii[J]. Foods, 2022, 11(18): 2725.

    [17] [17] BURKOVSKI A, KRMER R. Functional expression of the glutamate uptake system from Corynebacterium glutamicum in Escherichia coli[J]. FEMS Microbiology Letters, 1995, 127(3):263-266.

    [18] [18] CAO L, LIU Y C, SUN L, et al. Enhanced triacylglycerol metabolism contributes to the efficient biosynthesis of spinosad in Saccharopolyspora spinosa[J]. Synthetic and Systems Biotechnology, 2024, 9(4): 809-819.

    [19] [19] CAO L, ZHU Z R, QIN H, et al. Effects of a Pirin-like protein on strain growth and spinosad biosynthesis in Saccharopolyspora spinosa[J]. Applied Microbiology and Biotechnology, 2023,107(17): 5439-5451.

    [20] [20] RIBOLDI J G, CORREA J, RENFIJES M M, et al. Arc and BDNF mediated effects of hippocampal astrocytic glutamate uptake blockade on spatial memory stages[J]. Communications Biology, 2024, 7(1): 1032.

    [21] [21] BOROWSKA A M, CHIARIELLO M G, GARAEVA A A, et al. Structural basis of the obligatory exchange mode of human neutral amino acid transporter ASCT2[J]. Nature Communications, 2024, 15(1): 6570.

    [22] [22] DING X H, YANG W J, DU X B, et al. High-level and -yield production of L-leucine in engineered Escherichia coli by multistep metabolic engineering[J]. Metabolic engineering, 2023, 78:128-136.

    [23] [23] GUO F, FAN J, LIU J M, et al. Astrocytic ALKBH5 in stress response contributes to depressive-like behaviors in mice[J]. Nature Communications, 2024, 15(1): 4347.

    [24] [24] LI L, JIANG W H, LU Y H. A novel two-component system, GluR-GluK, involved in glutamate sensing and uptake in Streptomyces coelicolor[J]. Journal of Bacteriology, 2017, 199(18): e00097-17.

    [25] [25] HSER A T, BECKER A, BRUNE I, et al. Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source[J]. Journal of Bacteriology, 2003, 106(2/3):269-286.

    [26] [26] WARNEKE R, HERZBERG C, WEISS M, et al. DarA-the central processing unit for the integration of osmotic with potassium and amino acid homeostasis in Bacillus subtilis[J]. Journal of Bacteriology, 2024, 206(7): e0019024.

    [27] [27] KRONEMEYER W, PEEKHAUS N, KRMER R, et al. Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum[J]. Journal of Bacteriology, 1995, 177(5): 1152-1158.

    Tools

    Get Citation

    Copy Citation Text

    XIA Lun, ZHU Yan, WANG Shanrui, LIU Xirong, XIA Liqiu, RANG Jie. Effect of GluA on Growth Development and Butenyl-spinosyn Biosynthesis in Saccharopolyspora pogona[J]. Acta Laser Biology Sinica, 2024, 33(5): 470

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 31, 2024

    Accepted: Dec. 10, 2024

    Published Online: Dec. 10, 2024

    The Author Email: Jie RANG (rang0214@hunnu.edu.cn)

    DOI:10.3969/j.issn.1007-7146.2024.05.009

    Topics