Acta Optica Sinica, Volume. 42, Issue 8, 0806003(2022)

Refractive Index Sensing Simulation Analysis of Four-Pole Suspended Core Fiber Based on Surface Plasmon Resonance

Lei Liu1, Hui Chen2, and Yanjun Zhang1、*
Author Affiliations
  • 1State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, Shanxi 0 30051, China
  • 2Beijing Institute of Aerospace Engineering, Beijing 100076, China
  • show less
    Figures & Tables(14)
    Schematic diagrams of structure and polishing cross-section of four-pole suspended core fiber. (a) Complete structure of fiber; (b) polishing cross section of one hole; (c) polishing cross section of two opposite holes; (d) polishing cross section of two adjacent holes
    Distributions of optical field E when liquid refractive index is 1.39. (a) x polarization (650 nm); (b) x polarization (720 nm); (c) x polarization (800 nm); (d) y polarization (650 nm); (e) y polarization (720nm); (f) y polarization (800 nm)
    When analyte refractive index neff is 1.39, relationship among loss spectrum of core mode, effective refractive index of core mode, and effective refractive index of SPP mode
    Sensing characteristics when polishing one air hole. (a) Spectral loss corresponding to refractive indexes of different analytes; (b) relationship between refractive index and resonance wavelength
    Sensing characteristics when polishing two opposite air holes. (a) Spectral loss corresponding to refractive indexes of different analytes; (b) relationship between refractive index and resonance wavelength
    Sensing characteristics when polishing two adjacent air holes. (a) Spectral loss corresponding to refractive indexes of different analytes; (b) relationship between refractive index and resonance wavelength
    Influences of structural parameters on sensing characteristics when polishing one air hole. (a) Spectral loss under different gold film thicknesses;(b) spectral loss under different suspension pole thicknesses
    Influences of structural parameters on sensing characteristics when polishing two opposite air holes. (a) Spectral loss under different gold film thicknesses; (b) spectral loss under different suspension pole thicknesses
    Influences of structural parameters on sensing characteristics when polishing two adjacent air holes. (a) Spectral loss under different gold film thicknesses; (b) spectral loss under different suspension pole thicknesses
    • Table 1. Definition of each parameter value in Drude-Lorentz model

      View table

      Table 1. Definition of each parameter value in Drude-Lorentz model

      ParameterValueParameterValue
      ε5.9673ΩL /THz2π×650.07
      ωD /THz2π×2113.6ΓL /THz2π×104.86
      γD /THz2π×15.92Δε1.09
    • Table 2. Numerical analysis results when polishing one air hole

      View table

      Table 2. Numerical analysis results when polishing one air hole

      Refractive indexWavelength /nmSensitivity /(nm·RIU-1)Resolution /(10-4 RIU)Refractive indexWavelength /nmSensitivity /(nm·RIU-1)Resolution /(10-5 RIU)
      1.315749001.101.3766024004.20
      1.3258310001.001.3868432003.10
      1.3359313000.771.3971644002.30
      1.3460615000.671.4076060001.70
      1.3562117000.591.4182090001.10
      1.3663822000.451.42910150000.67
    • Table 3. Numerical analysis results when polishing two opposite air holes

      View table

      Table 3. Numerical analysis results when polishing two opposite air holes

      Refractive indexWavelength /nmSensitivity /(nm·RIU-1)Resolution /(10-4 RIU)Refractive indexWavelength /nmSensitivity /(nm·RIU-1)Resolution /(10-5 RIU)
      1.3157010001.001.3766020005.00
      1.3258010001.001.3868040002.50
      1.3359015000.671.3972040002.50
      1.3460515000.671.4076070001.40
      1.3562020000.501.41830100001.00
      1.3664020000.501.42930160000.63
    • Table 4. Numerical analysis results when polishing two adjacent air holes

      View table

      Table 4. Numerical analysis results when polishing two adjacent air holes

      Refractive indexWavelength /nmSensitivity /(nm·RIU-1)Resolution /(10-4 RIU)Refractive indexWavelength /nmSensitivity /(nm·RIU-1)Resolution /(10-5RIU)
      1.3159010001.01.3667030003.30
      1.3260010001.01.3770040002.50
      1.3361020000.51.3874060001.70
      1.3463020000.51.39800100001.00
      1.3565020000.51.40900200000.50
    • Table 5. Performance comparison of sensors that have been reported

      View table

      Table 5. Performance comparison of sensors that have been reported

      CharacteristicWavelength /μmRange of refractive indexMaximum spectral sensitivity /(nm·RIU-1)Maximum resolution /RIU
      Quasi-D-shape[6]550—7401.33—1.423877
      Double loss peaks[7]1.34—1.38189005.291×10-6
      Exposed-core grapefruit fiber and Bimetallic structure[8]1.33—1.4216400
      Four-hole grapefruit fiber[9]600—12001.33—1.4319000
      Our work570—9301.31—1.42200005.0×10-6
    Tools

    Get Citation

    Copy Citation Text

    Lei Liu, Hui Chen, Yanjun Zhang. Refractive Index Sensing Simulation Analysis of Four-Pole Suspended Core Fiber Based on Surface Plasmon Resonance[J]. Acta Optica Sinica, 2022, 42(8): 0806003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Oct. 15, 2021

    Accepted: Nov. 8, 2021

    Published Online: Mar. 30, 2022

    The Author Email: Zhang Yanjun (zhangyanjun@nuc.edu.cn)

    DOI:10.3788/AOS202242.0806003

    Topics