Opto-Electronic Engineering, Volume. 50, Issue 4, 220231(2023)

A progressive fusion image enhancement method with parallel hybrid attention

Guanghui Liu*, Qi Yang, Yuebo Meng, Minhua Zhao, and Hua Yang
Author Affiliations
  • School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
  • show less
    Figures & Tables(16)
    Structure and principle diagram of this method
    Multi-scale weighted aggregation module
    Parallel hybrid attention structure diagram
    Structure diagram of channel attention and pixel attention
    Structure diagram of pixel attention
    (a) Progressive feature fusion module;(b) Fusion unit at each stage
    Experimental comparisons on the LOL data set
    Experimental contrast effect on MEF dataset
    Experimental contrast effect on DICM data set
    Experimental comparisons on LIME datasets
    Progressive fusion enhances the effect and details at different stages
    • Table 1. Compares the amount of LOL data set with advanced image enhancement methods

      View table
      View in Article

      Table 1. Compares the amount of LOL data set with advanced image enhancement methods

      MethodsSSIM PSNR /dBLPIPS GMSD FSIM UQI
      (上箭头 和下箭头 分别表示随着指标数值变大或减小,并将最优结果加粗标出)
      LIME[19]0.564916.75860.41830.15410.85490.8805
      MBLLEN[20]0.724717.85830.36720.11600.92620.8261
      Retinex[21]0.599716.77400.42490.15490.86420.9110
      KinD[22]0.802520.87410.51370.08880.93970.9250
      EnGAN [23]0.651517.48280.39030.10460.92260.8499
      Zero-DCE[24]0.562314.86710.38520.16460.92760.7205
      GLAD[25]0.724719.71820.39940.20350.93290.9204
      Ours0.905321.89390.35570.10350.93810.9266
    • Table 2. Compares the values of Lime, DICM and MEF data sets with those of advanced image enhancement methods

      View table
      View in Article

      Table 2. Compares the values of Lime, DICM and MEF data sets with those of advanced image enhancement methods

      MethodsLIMEDICMMEF
      LIME[30]4.15493.00054.4466
      MBLLEN[31]4.51383.66544.6901
      Retinex[32]4.59784.57795.1747
      KinD[33]4.76323.56514.7514
      EnGAN [34]3.65742.91743.5373
      Zero-DCE[35]3.76902.83484.0240
      GLAD[36]4.12823.11473.6897
      Ours3.42812.80543.5193
    • Table 3. Quantitative comparison after adding different network modules to LOL data set

      View table
      View in Article

      Table 3. Quantitative comparison after adding different network modules to LOL data set

      MethodsPSNR/dBSSIM
      Baseline18.440.73
      w/o PHA、PFM,with MWA19.070.78
      With PHA,w/o MWA、PFM20.530.84
      Ours21.870.89
    • Table 4. Quantitative results of progressive fusion after enhancement in different stages

      View table
      View in Article

      Table 4. Quantitative results of progressive fusion after enhancement in different stages

      StagePSNR/dBSSIM
      With 1,w/o 2、320.080.76
      With 1、2,w/o 320.910.83
      With 1、2、321.530.87
    • Table 5. Average enhancement time of each method

      View table
      View in Article

      Table 5. Average enhancement time of each method

      Runningtime LIME[30]GLAD[36]Enlighten-GAN[34]KinD[33]Zero-DCE[35]Retinex-Net[32]BIMEF[37]Ours
      20.1730.00830.00530.00780.00160.00630.12800.0458
    Tools

    Get Citation

    Copy Citation Text

    Guanghui Liu, Qi Yang, Yuebo Meng, Minhua Zhao, Hua Yang. A progressive fusion image enhancement method with parallel hybrid attention[J]. Opto-Electronic Engineering, 2023, 50(4): 220231

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Sep. 21, 2022

    Accepted: Dec. 30, 2022

    Published Online: Jun. 15, 2023

    The Author Email: Guanghui Liu (guanghuil@163.com)

    DOI:10.12086/oee.2023.220231

    Topics