Acta Optica Sinica, Volume. 40, Issue 6, 0634001(2020)

A Proof-of-Principle Experiment Demonstrating X-Ray Fluorescence Imaging at the Shenguang-Ⅲ Prototype Laser Facility

Li Yao1,2, Yudong Pu1, Minxi Wei1, Xiayu Zhan1, Xing Zhang1, Ji Yan1, Yimeng Yang1, Lifei Hou1, and Yongkun Ding3、*
Author Affiliations
  • 1Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
  • 2Department of Engineering Physics, Tsinghua University, Beijing 100084, China
  • 3Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • show less
    References(25)

    [1] Drake R P. High-energy-density physics: fundamentals, inertial fusion, and experimental astrophysics[M]. Berlin: Springer, 423-448(2006).

    [2] Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z pinches[J]. Reviews of Modern Physics, 78, 755-807(2006).

    [3] Atzeni S[M]. Meyer-ter-Vehn J. The physics of inertial fusion, 241-307(2004).

    [4] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 2, 3933-4024(1995).

    [5] Lindl J D, Amendt P, Berger R L et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 11, 339-491(2004).

    [6] Grosskopf M J, Drake R P, Kuranz C C et al. Modeling of multi-interface, diverging, hydrodynamic experiments for the National Ignition Facility[J]. Astrophysics and Space Science, 322, 57-63(2009).

    [7] Li Q, Yao L, Jing L F et al. Fluorescence based imaging for M-band drive symmetry measurement in hohlraum[J]. Physics of Plasmas, 23, 112707(2016).

    [8] Li Q, Guo L, Gong T et al. Measurement of P2 M-band flux asymmetry in indirect-drive hohlraum on Shenguang-III prototype laser facility[J]. Review of Scientific Instruments, 90, 043505(2019).

    [9] Jarrott L C, Wei M S. McGuffey C, et al. Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets[J]. Nature Physics, 12, 499-504(2016).

    [10] Jarrott L C. McGuffey C, Beg F N, et al. Transport and spatial energy deposition of relativistic electrons in copper-doped fast ignition plasmas[J]. Physics of Plasmas, 24, 102710(2017).

    [11] Suter L J, Landen O L, Koch J I. Prospects for fluorescence based imaging/visualization of hydrodynamic systems on the National Ignition Facility[J]. Review of Scientific Instruments, 70, 663-666(1999).

    [12] Lanier N E, Barnes C W, Perea R et al. Feasibility of fluorescence-based imaging of high-energy-density hydrodynamics experiments[J]. Review of Scientific Instruments, 74, 2169-2173(2003).

    [13] MacDonald M J, Keiter P A, Montgomery D S et al. 85(11): 11E602(2014).

    [14] MacDonald M J, Keiter P A, Montgomery D S et al. Spatially resolved density and ionization measurements of shocked foams using X-ray fluorescence[J]. Journal of Applied Physics, 120, 125901(2016).

    [15] Bearden J A, Burr A F. Reevaluation of X-ray atomic energy levels[J]. Reviews of Modern Physics, 39, 125-142(1967).

    [16] Sanchez del Rio M, Dejus R J. XOP v2.4: recent developments of the X-ray optics software toolkit[J]. Proceedings of SPIE, 8141, 814115(2011).

    [17] Bearden J A. X-ray wavelengths[J]. Reviews of Modern Physics, 39, 78-124(1967).

    [18] Scofield J H. Exchange corrections of K x-ray emission rates[J]. Physical Review A, 9, 1041-1049(1974).

    [19] Su G B, Li Z D, Huang G F et al. Trihydroxymethylaminomethane high-efficiency X-ray analyser crystal[J]. X-Ray Spectrometry, 21, 87-89(1992).

    [20] Meadowcroft A L, Bentley C D, Stott E N. Evaluation of the sensitivity and fading characteristics of an image plate system for X-ray diagnostics[J]. Review of Scientific Instruments, 79, 113102(2008).

    [21] Maddox B R, Park H S, Remington B A et al. High-energy X-ray backlighter spectrum measurements using calibrated image plates[J]. Review of Scientific Instruments, 82, 023111(2011).

    [22] Vainshtein L A, Safronova U I. Wavelengths and transition probabilities of satellites to resonance lines of H- and He-like ions[J]. Atomic Data and Nuclear Data Tables, 21, 49-68(1978).

    [23] Bambynek W, Crasemann B, Fink R W et al. X-ray fluorescence yields, Auger, and Coster-Kronig transition probabilities[J]. Reviews of Modern Physics, 44, 716-813(1972).

    [24] Huang C Q, Luo X, Zhang Q J et al. Fabrication and characterization of Au-doped PMP foams[J]. High Power Laser and Particle Beams, 27, 151-155(2015).

    Tools

    Get Citation

    Copy Citation Text

    Li Yao, Yudong Pu, Minxi Wei, Xiayu Zhan, Xing Zhang, Ji Yan, Yimeng Yang, Lifei Hou, Yongkun Ding. A Proof-of-Principle Experiment Demonstrating X-Ray Fluorescence Imaging at the Shenguang-Ⅲ Prototype Laser Facility[J]. Acta Optica Sinica, 2020, 40(6): 0634001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: X-Ray Optics

    Received: Nov. 6, 2019

    Accepted: Nov. 29, 2019

    Published Online: Mar. 6, 2020

    The Author Email: Ding Yongkun (ding-yk@vip.sina.com)

    DOI:10.3788/AOS202040.0634001

    Topics