Chinese Journal of Lasers, Volume. 47, Issue 5, 0500005(2020)

Air Lasing: Novel Effects in Strong Laser Fields and New Technology in Remote Sensing

Jinping Yao1,2、* and Ya Cheng1,2,3、**
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2CAS Center for Excellence in Ultra-Intense Laser Sciences, Shanghai 201800, China
  • 3State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • show less
    References(117)

    [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [2] Cohen-Tannoudji C N. Nobel lecture: manipulating atoms with photons[J]. Reviews of Modern Physics, 70, 707-719(1998).

    [3] Ashkin A, Dziedzic J. Optical trapping and manipulation of viruses and bacteria[J]. Science, 235, 1517-1520(1987).

    [4] Cao X, Jahazi M, Immarigeon J P et al. A review of laser welding techniques for magnesium alloys[J]. Journal of Materials Processing Technology, 171, 188-204(2006).

    [5] Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime[J]. Reviews of Modern Physics, 78, 309-371(2006).

    [6] Mourou G, Tajima T. The extreme light infrastructure: optics’ next horizon[J]. Optics and Photonics News, 22, 47-51(2011).

    [7] Agostini P, Fabre F, Mainfray G et al. Free-free transitions following six-photon ionization of xenon atoms[J]. Physical Review Letters, 42, 1127-1130(1979).

    [8] Fittinghoff D N, Bolton P R, Chang B et al. Observation of nonsequential double ionization of helium with optical tunneling[J]. Physical Review Letters, 69, 2642-2645(1992).

    [9] L'Huillier A. Balcou P. High-order harmonic generation in rare gases with a 1-ps 1053-nm laser[J]. Physical Review Letters, 70, 774-777(1993).

    [10] Krause J L, Schafer K J, Kulander K C. High-order harmonic generation from atoms and ions in the high intensity regime[J]. Physical Review Letters, 68, 3535-3538(1992).

    [11] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 81, 163-234(2009).

    [12] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 81, 1229-1285(2009).

    [13] Henig A, Kiefer D, Markey K et al. Enhanced laser-driven ion acceleration in the relativistic transparency regime[J]. Physical Review Letters, 103, 045002(2009).

    [14] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).

    [15] Wang C, Fomovsky M, Miao G X et al. Femtosecond laser crosslinking of the cornea for non-invasive vision correction[J]. Nature Photonics, 12, 416-422(2018).

    [16] Kasparian J. White-light filaments for atmospheric analysis[J]. Science, 301, 61-64(2003).

    [17] Xu H L, Cheng Y, Chin S L et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 9, 275-293(2015).

    [18] Vaulin V A, Slinko V N, Sulakshin S S. Air ultraviolet laser excited by high-power microwave pulses[J]. Soviet Journal of Quantum Electronics, 18, 1457-1458(1988).

    [19] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).

    [20] Braun A, Korn G, Liu X et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 20, 73-75(1995).

    [21] Luo Q, Liu W W, Chin S L. Lasing action in air induced by ultra-fast laser filamentation[J]. Applied Physics B: Lasers and Optics, 76, 337-340(2003).

    [23] Yao J P, Zeng B, Xu H L et al. High-brightness switchable multiwavelength remote laser in air[J]. Physical Review A, 84, 051802(2011).

    [24] Polynkin P, Cheng Y[M]. Air lasing(2018).

    [25] Yuan L Q, Liu Y, Yao J P et al. Recent advances in air lasing: a perspective from quantum coherence[J]. Advanced Quantum Technologies, 2, 1900080(2019).

    [26] Li H L, Yao D W, Wang S Q et al. Air lasing: phenomena and mechanisms[J]. Chinese Physics B, 28, 114204(2019).

    [27] Dogariu A, Miles R B. Nitrogen lasing in air. [C]// Conference on Lasers and Electro-Optics. San Jose, California, United States: Optical Society of America, QW1E, 1(2013).

    [28] Laurain A, Scheller M, Polynkin P. Low-threshold bidirectional air lasing[J]. Pysical Review Letters, 113, 253901(2014).

    [29] Kartashov D, Ališauskas S, Andriukaitis G et al. Free-space nitrogen gas laser driven by a femtosecond filament[J]. Physical Review A, 86, 033831(2012).

    [31] Kartashov D, Ališauskas S, Baltuška A et al. Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen[J]. Physical Review A, 88, 041805(2013).

    [32] Yao J P, Li G H, Jing C R et al. Remote creation of coherent emissions in air with two-color ultrafast laser pulses[J]. New Journal of Physics, 15, 023046(2013).

    [33] Dogariu A, Miles R B. Three-photon femtosecond pumped backwards lasing in argon[J]. Optics Express, 24, A544-A552(2016).

    [34] Chu W, Zeng B, Yao J P et al. Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses[J]. Europhysics Letters, 97, 64004(2012).

    [35] Yuan S, Wang T J, Teranishi Y et al. Lasing action in water vapor induced by ultrashort laser filamentation[J]. Applied Physics Letters, 102, 224102(2013).

    [36] Dogariu A, Chng T L, Miles R B. Remote backward-propagating water lasing in atmospheric air. [C]//Conference on Lasers and Electro-Optics. San Jose, California. Washington, D.C.: OSA, AW4K, 5(2016).

    [39] Malevich P N, Maurer R, Kartashov D et al. Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament[J]. Optics Letters, 40, 2469-2472(2015).

    [40] Dogariu A. Remote trace detection of hazardous substances using nonlinear optics. [C]//Light, Energy and the Environment. Canberra. Washington, D.C.: OSA, EF4A, 4(2014).

    [42] Liu Z X, Yao J P, Zhang H S et al. Extreme nonlinear Raman interaction of an ultrashort nitrogen ion laser with an impulsively excited molecular wavepacket[J]. Physical Review A, 101, 043404(2020).

    [43] Yao J P, Chu W, Liu Z X et al. An anatomy of strong-field ionization-induced air lasing[J]. Applied Physics B, 124, 73(2018).

    [45] Mitryukovskiy S, Liu Y, Ding P J et al. Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses[J]. Physical Review Letters, 114, 063003(2015).

    [46] Zhang H S, Jing C R, Yao J P et al. Rotational coherence encoded in an “air-laser” spectrum of nitrogen molecular ions in an intense laser field[J]. Physical Review X, 3, 041009(2013).

    [47] Liu Y, Ding P J, Lambert G et al. Recollision-induced superradiance of ionized nitrogen molecules[J]. Physical Review Letters, 115, 133203(2015).

    [48] Liu Y, Ding P J, Ibrakovic N et al. Unexpected sensitivity of nitrogen ions superradiant emission on pump laser wavelength and duration[J]. Physical Review Letters, 119, 203205(2017).

    [49] Britton M, Laferrière P, Ko D H et al. Testing the role of recollision in N2+ air lasing[J]. Physical Review Letters, 120, 133208(2018).

    [50] Xu H L, Lötstedt E, Iwasaki A et al. Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling[J]. Nature Communications, 6, 8347(2015).

    [51] Yao J P, Jiang S C, Chu W et al. Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields[J]. Physical Review Letters, 116, 143007(2016).

    [52] Zhang Q, Xie H Q, Li G H et al. Sub-cycle coherent control of ionic dynamics via transient ionization injection[J]. Communications Physics, 3, 50(2020).

    [53] Chen J M, Yao J P, Zhang H S et al. Electronic-coherence-mediated molecular nitrogen-ion lasing in a strong laser field[J]. Physical Review A, 100, 031402(2019).

    [54] Zhang A, Liang Q Q, Lei M W et al. Coherent modulation of superradiance from nitrogen ions pumped with femtosecond pulses[J]. Optics Express, 27, 12638-12646(2019).

    [55] Mysyrowicz A, Danylo R, Houard A et al. Lasing without population inversion in N2+[J]. APL Photonics, 4, 110807(2019).

    [56] Yao J P, Chu W, Liu Z X et al. Generation of Raman lasers from nitrogen molecular ions driven by ultraintense laser fields[J]. New Journal of Physics, 20, 033035(2018).

    [57] Liu Z X, Yao J P, Chen J M et al. Near-resonant Raman amplification in the rotational quantum wave packets of nitrogen molecular ions generated by strong field ionization[J]. Physical Review Letters, 120, 083205(2018).

    [58] Yuan L Q, Hokr B H, Traverso A J et al. Theoretical analysis of the coherence-brightened laser in air[J]. Physical Review A, 87, 023826(2013).

    [59] Talebpour A, Abdel-Fattah M, Bandrauk A D et al. Spectroscopy of the gases interacting with intense femtosecond laser pulses[J]. Laser Physics, 11, 68-76(2001).

    [60] Kartashov D, Ališauskas S, Pugžlys A et al. Theory of a filament initiated nitrogen laser[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 094016(2015).

    [61] Sprangle P, Peñano J, Hafizi B et al. Remotely induced atmospheric lasing[J]. Applied Physics Letters, 98, 211102(2011).

    [62] Shneider M N, Baltuška A, Zheltikov A M. Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization[J]. Journal of Applied Physics, 110, 083112(2011).

    [63] Xie H Q, Li G H, Chu W et al. Backward nitrogen lasing actions induced by femtosecond laser filamentation: influence of duration of gain[J]. New Journal of Physics, 17, 073009(2015).

    [64] Itikawa Y. Cross sections for electron collisions with nitrogen molecules[J]. Journal of Physical and Chemical Reference Data, 35, 31-53(2006).

    [65] Heard H G. Ultra-violet gas laser at room temperature[J]. Nature, 200, 667(1963).

    [66] Yao J P, Xie H Q, Zeng B et al. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses[J]. Optics Express, 22, 19005-19013(2014).

    [68] Ding P J, Oliva E, Houard A et al. Lasing dynamics of neutral nitrogen molecules in femtosecond filaments[J]. Physical Review A, 94, 043824(2016).

    [69] Ding P J, Escudero J C, Houard A et al. Nonadiabaticity of cavity-free neutral nitrogen lasing[J]. Physical Review A, 96, 033810(2017).

    [71] Li G H, Jing C R, Zeng B et al. Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization[J]. Physical Review A, 89, 033833(2014).

    [72] Zhong X Q, Miao Z M, Zhang L L et al. Vibrational and electronic excitation of ionized nitrogen molecules in intense laser fields[J]. Physical Review A, 96, 043422(2017).

    [73] Lei M W, Wu C Y, Zhang A et al. Population inversion in the rotational levels of the superradiant N2+ pumped by femtosecond laser pulses[J]. Optics Express, 25, 4535-4541(2017).

    [74] Miao Z M, Zhong X Q, Zhang L L et al. Stimulated-Raman-scattering-assisted superfluorescence enhancement from ionized nitrogen molecules in 800-nm femtosecond laser fields[J]. Physical Review A, 98, 033402(2018).

    [75] Xu B, Jiang S C, Yao J P et al. Free-space Ν2+ lasers generated in strong laser fields: the role of molecular vibration[J]. Optics Express, 26, 13331-13339(2018).

    [76] Arissian L, Kamer B, Rastegari A et al. Transient gain from N2+ in light filaments[J]. Physical Review A, 98, 053438(2018).

    [77] Britton M, Lytova M, Laferrière P et al. Short- and long-term gain dynamics in N2+ air lasing[J]. Physical Review A, 100, 013406(2019).

    [78] Zheng W, Miao Z M, Zhang L L et al. Enhanced coherent emission from ionized nitrogen molecules by femtosecond laser pulses[J]. The Journal of Physical Chemistry Letters, 10, 6598-6603(2019).

    [79] Xie H Q, Zeng B, Li G H et al. Coupling of N2+rotational states in an air laser from tunnel-ionized nitrogen molecules[J]. Physical Review A, 90, 042504(2014).

    [80] Zeng B, Chu W, Li G H et al. Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy[J]. Physical Review A, 89, 042508(2014).

    [82] Wang T J, Ju J J, Daigle J F et al. Self-seeded forward lasing action from a femtosecond Ti∶sapphire laser filament in air[J]. Laser Physics Letters, 10, 125401(2013).

    [83] Chu W, Li G H, Xie H Q et al. A self-induced white light seeding laser in a femtosecond laser filament[J]. Laser Physics Letters, 11, 015301(2014).

    [84] Li H L, Hou M Y, Zang H W et al. Significant enhancement of N2+ lasing by polarization-modulated ultrashort laser pulses[J]. Physical Review Letters, 122, 013202(2019).

    [85] Xie H Q, Zhang Q, Li G H et al. Vibrational population transfer between electronic states of N2+ in polarization-modulated intense laser fields[J]. Physical Review A, 100, 053419(2019).

    [86] Ando T, Lötstedt E, Iwasaki A et al. Rotational, vibrational, and electronic modulations in N2+ lasing at 391 nm: evidence of coherent B2Σu+-X2Σg+-A2Πu coupling[J]. Physical Review Letters, 123, 203201(2019).

    [87] Li H X, Song Q Y, Yao J P et al. Air lasing from singly ionized N2 driven by bicircular two-color fields[J]. Physical Review A, 99, 053413(2019).

    [88] Clerici M, Bruhács A, Faccio D et al. Terahertz control of air lasing[J]. Physical Review A, 99, 053802(2019).

    [89] Kartashov D, Möhring J, Andriukaitis G et al. Stimulated amplification of UV emission in a femtosecond filament using adaptive control. [C]//Conference on Lasers and Electro-Optics 2012, San Jose, California. Washington, D.C.: OSA, QTh4E, 6(2012).

    [92] Jing C R, Yao J P, Li Z T et al. Free-space air molecular lasing from highly excited vibrational states pumped by circularly-polarized femtosecond laser pulses[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 094001(2015).

    [94] Andriukaitis G, Möhring J, Kartashov D et al. Intense, directional UV emission from molecular nitrogen ions in an adaptively controlled femtosecond filament[J]. EPJ Web of Conferences, 41, 10004(2013).

    [95] Kartashov D, Haessler S, Alisauskas S et al. Transient inversion in rotationally aligned nitrogen ions in a femtosecond filament. [C]//Research in Optical Sciences, Messe Berlin, Berlin. Washington, D.C.: OSA, HTh4B, 5(2014).

    [96] Azarm A, Corkum P, Polynkin P. Optical gain in rotationally excited nitrogen molecular ions[J]. Physical Review A, 96, 051401(2017).

    [97] Xu H L, Lötstedt E, Ando T et al. Alignment-dependent population inversion in N2+ in intense few-cycle laser fields[J]. Physical Review A, 96, 041401(2017).

    [98] Wan Y X, Xu B, Yao J P et al. Polarization ellipticity dependence of N2+ air lasing: the role of coupling between the ground state and a photo-excited intermediate state[J]. Journal of the Optical Society of America B, 36, G57-G61(2019).

    [99] Fu Y, Lötstedt E, Li H L et al. Optimization of N2+ lasing through population depletion in the X2Σg+ state using elliptically modulated ultrashort intense laser fields[J]. Physical Review Research, 2, 012007(2020).

    [100] Zhang A, Lei M W, Gao J S et al. Subfemtosecond-resolved modulation of superfluorescence from ionized nitrogen molecules by 800-nm femtosecond laser pulses[J]. Optics Express, 27, 14922-14930(2019).

    [101] Xu B, Yao J P, Wan Y X et al. Vibrational Raman scattering from coherently excited molecular ions in a strong laser field[J]. Optics Express, 27, 18262-18272(2019).

    [102] Arissian L, Kamer B, Rasoulof A. Effect of rotational wave packets on the stimulated emission of nitrogen with light filament[J]. Optics Communications, 369, 215-219(2016).

    [104] Zhang H S, Jing C R, Li G H et al. Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field[J]. Physical Review A, 88, 063417(2013).

    [105] Zhong X Q, Miao Z M, Zhang L L et al. Optimizing the 391-nm lasing intensity from ionized nitrogen molecules in 800-nm femtosecond laser fields[J]. Physical Review A, 97, 033409(2018).

    [106] Wang T J, Daigle J F, Ju J J et al. Forward lasing action at multiple wavelengths seeded by white light from a femtosecond laser filament in air[J]. Physical Review A, 88, 053429(2013).

    [107] Wang P, Wu C Y, Lei M W et al. Population dynamics of molecular nitrogen initiated by intense femtosecond laser pulses[J]. Physical Review A, 92, 063412(2015).

    [109] Li Z T, Zeng B, Chu W et al. Generation of elliptically polarized nitrogen ion laser fields using two-color femtosecond laser pulses[J]. Scientific Reports, 6, 21504(2016).

    [110] Li H L, Zang H W, Su Y et al. Generation of air lasing at extended distances by coaxial dual-color femtosecond laser pulses[J]. Journal of Optics, 19, 124006(2017).

    [111] Jing C R, Xie H Q, Li G H et al. Dynamic wavelength switching of a remote nitrogen or air laser with chirped femtosecond laser pulses[J]. Laser Physics Letters, 12, 015301(2015).

    [112] Tong X M, Zhao Z X, Lin C D. Theory of molecular tunneling ionization[J]. Physical Review A, 66, 033402(2002).

    [113] Campbell J B, Wynne R H[M]. Introduction to remote sensing(2011).

    [114] Chu W, Li H L, Ni J L et al. Lasing action induced by femtosecond laser filamentation in ethanol flame for combustion diagnosis[J]. Applied Physics Letters, 104, 091106(2014).

    [115] Ding P J, Ruchkina M, Liu Y et al. Femtosecond two-photon-excited backward lasing of atomic hydrogen in a flame[J]. Optics Letters, 43, 1183-1186(2018).

    [116] Ding P J, Ruchkina M. Cont-Bernard D D, et al. Detection of atomic oxygen in a plasma-assisted flame via a backward lasing technique[J]. Optics Letters, 44, 5477-5480(2019).

    [117] Ruchkina M, Ding P J, Ehn A et al. Single-shot, spatially-resolved stand-off detection of atomic hydrogen via backward lasing in flames[J]. Proceedings of the Combustion Institute, 37, 1281-1288(2019).

    Tools

    Get Citation

    Copy Citation Text

    Jinping Yao, Ya Cheng. Air Lasing: Novel Effects in Strong Laser Fields and New Technology in Remote Sensing[J]. Chinese Journal of Lasers, 2020, 47(5): 0500005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: reviews

    Received: Mar. 5, 2020

    Accepted: Apr. 3, 2020

    Published Online: May. 12, 2020

    The Author Email: Yao Jinping (jinpingyao@siom.ac.cn), Cheng Ya (ya.cheng@siom.ac.cn)

    DOI:10.3788/CJL202047.0500005

    Topics