Chinese Journal of Lasers, Volume. 38, Issue 3, 310001(2011)

Numerical Simulation of a Surface Plasmonic Waveguide with Double Parallel Columniform Metallic Nanorods Coated with Gain Medium

Qin Xiaojuan1,2、*, Guo Yanan2, and Xue Wenrui2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(24)

    [1] [1] V. M. Shalaev, S. Kawata. Nanophotonics with Surface Plasmons [M]. Amsterdam: Elsevier, 2007

    [2] [2] H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings [M]. Berlin: Springer, 1988

    [3] [3] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824~830

    [4] [4] E. Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189~193

    [5] [5] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux et al.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083): 508~511

    [6] [6] S. A. Maier. Plasmonics: the promise of highly integrated optical devices[J]. IEEE J. Sel. Top. Quantum Electron., 2006, 12(6): 1671~1677

    [7] [7] E. Feigenbaum, M. Orenstein. Modeling of complementary (void) plasmon waveguiding[J]. J. Lightwave Technol., 2007, 25(9): 2547~2562

    [8] [8] J. Takahara, S. Yamagishi, H. Taki et al.. Guiding of a one-dimensional optical beam with nanometer diameter[J]. Opt. Lett., 1997, 22(7): 475~477

    [9] [9] U. Schroter, A. Dereux. Surface plasmon polaritons on metal cylinders with dielectric core[J]. Phys. Rev. B, 2001, 64(12): 125420

    [10] [10] F. I. Baida, A. Belkhir, D. Van Labeke. Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes[J]. Phys. Rev. B, 2006, 74(20):205419

    [11] [11] P. F. Yang, Y. Gu, Q. H. Gong. Surface plasmon polariton and mode transformation in a nanoscale lossy metallic cylindrical cable[J]. Chin. Phys. B, 2008, 17(10): 3880~3893

    [12] [12] Guo Yanan, Xue Wenrui, Zhang Wenmei. Propagation properties of a surface plasmonic waveguide with double elliptical metallic nanorods[J]. Acta Physica Sinica, 2009, 58(6): 4168~4174

    [13] [13] M. P. Nezhad, K. Tetz, Y. Fainman. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides [J]. Opt. Express, 2004, 12(17): 4072~4079

    [14] [14] S. A. Maier. Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides [J]. Opt. Commun., 2006, 258(2): 295~299

    [15] [15] D. S. Citrin. Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium [J]. Opt. Lett., 2006, 31(1): 98~100

    [16] [16] J. Grandidier, G. C. des Francs, S. Massenot et al.. Gain assisted propagation in a plasmonic waveguide at telecom wavelength[J]. Nano Lett., 2009, 9(8): 2935~2939

    [17] [17] G. C. des Francs, P. Bramant, J. Grandidier et al.. Optical gain, spontaneous and stimulated emission of surface plasmon polaritons in confined plasmonic waveguide[J]. Opt. Express, 2010, 18(16): 16327~16334

    [18] [18] Z. Zhu, T. G. Brown. Full-vectorial finite-difference analysis of microstructured optical fibers[J]. Opt. Express, 2002, 10(17): 853~864

    [19] [19] S. Guo, F. Wu, S. Albin. Loss and dispersion analysis of microstructured optical fibers by finite-difference method[J]. Opt. Express, 2004, 12(15): 3341~3352

    [20] [20] C. Yu, H. C. Chang. Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic craystal fibers[J]. Opt. Express, 2004, 12(25): 6165~6177

    [21] [21] http://www.caam.rice.edu/software/ARPACK/

    [22] [22] Wenrui Xue, Ya-nan Guo, Peng Li et al.. Propagation properties of a surface plasmonic waveguide with double elliptical air cores[J]. Opt. Express, 2008, 16(14): 10710~10720

    [23] [23] Yanan Guo, Wenrui Xue, Rongcao Yang et al.. Numerical simulations of a surface plasmonic waveguide with three circular air cores[J]. Opt. Express, 2009, 17(14): 11822~11833

    [24] [24] P. B. Johnson, R. W. Christy. Optical constants of the noble metals[J]. Phys. Rev. B, 1972, 6(12): 4370~4379

    CLP Journals

    [1] Li Zhiquan, Gao Xiaoguang, Niu Liyong, Zhang Xin. Propagation Properties of a Surface Plasmon Polariton Directional Coupler[J]. Chinese Journal of Lasers, 2012, 39(10): 1010001

    [2] Li Wei, Liu Chao, Lü Jingwei, Liu Zhaoting, Wang Famei. LSPR Properties of Metal-Compound-Graphene Composite Nanoarray Structure[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82401

    [3] Zhang Xingfang, Zhang Lamei, Fan Qunfang, Liao Yanlin, Chen Xiaodong, Mao Qinghe. Tunable Localized Surface Plasmon Resonance of Gold Nanoshell Particle[J]. Chinese Journal of Lasers, 2011, 38(9): 910001

    [4] Zhang Guanmao, Sun Haili, Li Jianming, Zhao Hai. Study on the Transmission Characteristics of Symmetric Hybrid Long-range Surface Plasmon Polariton Waveguide[J]. Laser & Optoelectronics Progress, 2013, 50(12): 121301

    Tools

    Get Citation

    Copy Citation Text

    Qin Xiaojuan, Guo Yanan, Xue Wenrui. Numerical Simulation of a Surface Plasmonic Waveguide with Double Parallel Columniform Metallic Nanorods Coated with Gain Medium[J]. Chinese Journal of Lasers, 2011, 38(3): 310001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: Jun. 25, 2010

    Accepted: --

    Published Online: Feb. 24, 2011

    The Author Email: Xiaojuan Qin (qinxiaojuan1o@163.com)

    DOI:10.3788/cjl201138.0310001

    Topics