Journal of Infrared and Millimeter Waves, Volume. 41, Issue 6, 958(2022)

Design considerations to increase the power-efficiency of a supper-large-optical-cavity waveguide structure diode laser

Kun ZHOU1,2, Lin-An HE1,2, Yi LI1,2, Yu-Wen HE1,2, Wei-Chuan DU1,2、*, Sheng-Zhe LIU1,2, Liang ZHANG1,2, Yao HU1,2, Liang SONG1,2, Song-Xin GAO1,2, and Chun TANG1,2
Author Affiliations
  • 1Institute of Applied Electronics,CAEP,Mianyang 621900,China
  • 2Key Laboratory of Science and Technology on High Energy Lasers,CAEP,Mianyang 621900,China
  • show less
    Figures & Tables(15)
    Transverse modes (a) and electron leakage (b) in the reference structure
    Power efficiency of the reference structure with different p-waveguide doping
    Transverse modes in the SLOC with mode control layers
    (a) Transverse modes in the SLOC with grading p- waveguide, (b) electron concentration comparision with and without grading-waveguide
    Slope efficiency (a) and voltage (b) comparison of the grading and reference structures
    Power efficiency (a) and vertical far-field (b) of the grading and reference structures
    Calculated temperature dependence of slope efficiency and threshold comparison of the grading and reference structures,the slope efficiency values are extracted from the output power at 10 A to 20 A
    Calculated power (a) and gain (b) distribution in the cavity with uniform current injection
    Conception of linear current (a), and calculated power and gain distribution (b) in the cavity with linear current injection
    Carrier density (a) and output power at 20 A (b) comparison of linear and uniform current injection
    Designed output power and efficiency of the 4-mm-long and 100 μm wide broad-area laser diode
    • Table 1. Reference structure

      View table
      View in Article

      Table 1. Reference structure

      LayerMaterialThickness/nmDoping
      p++-contactGaAs200C:2E19
      p-claddingAl0.6Ga0.4As400C:2E18
      p-waveguideAl0.15Ga0.85As1 500C:1E17
      QWIn0.2Ga0.8As8.6undoped
      n-waveguideAl0.15Ga0.85As1 600undoped
      n-waveguideAl0.15Ga0.85As400Si:5E17
      n-claddingAl0.25Ga0.75As1 500Si:2E18 graded to 5E17
      n-bufferGaAs500Si:2E18
    • Table 2. Grading structure

      View table
      View in Article

      Table 2. Grading structure

      LayerMaterialThickness/nmDoping
      p++-contactGaAs200C:2E19
      p-claddingAl0.6Ga0.4As200C:2E18
      p-waveguide

      Al0.15Ga0.85As graded to

      Al0.6Ga0.4As

      600C:2E17graded to 2E18
      p-waveguideAl0.15Ga0.85As300C:2E17
      mode controlAl0.08Ga0.92As50Undoped
      QWIn0.2Ga0.8As8.6Undoped
      mode controlAl0.08Ga0.92As50Undoped
      n-waveguideAl0.15Ga0.85As1 600Undoped
      n-waveguideAl0.15Ga0.85As1 000Si:5E17
      n-claddingAl0.25Ga0.75As1 500Si:2E18 graded to 5E17
      n-bufferGaAs500Si:2E18
    • Table 3. Parameters comparison of the reference and grading structures at 300 K

      View table
      View in Article

      Table 3. Parameters comparison of the reference and grading structures at 300 K

      ParametersReferenceGrading
      Modal loss at 1 A0.494 cm-10.554 cm-1
      Modal loss at 20 A0.846 cm-10.668 cm-1
      Internal efficiency at 1 A0.9460.954
      Internal efficiency at 20 A0.8040.917
      Confinement factor of QW0.432%0.517%
      Characteristic temperature T0174 K194 K
      Characteristic temperature T1228 K483 K
      Power at 20 A20.3 W21.42 W
      Voltage at 20 A1.642 V1.495 V
      Efficiency at 20 A~61%~71.6%
    • Table 4. Material and device parameters for the modeling lasers

      View table
      View in Article

      Table 4. Material and device parameters for the modeling lasers

      Cavity length /μm4 000Internal quantum efficiency ηi0.954
      QW thickness /nm8.6Optical mode Г0.517%
      Emitter width /μm100Internal loss αi/(1/cm)0.668
      HR99%Refractive index3.44
      AR0.01%∼30%g0(1/cm)4 000
      Jtr/(A/cm270Thermal resistance Rth/(K/W)2.0
      Ntr/(1/cm31.0×1018T1/K483
      T0/K194Temperature/K300
      Spontaneous coefficient B /(cm6/s)1×10-9

      Auger coefficient

      C/(cm9/s)

      1×10-30
    Tools

    Get Citation

    Copy Citation Text

    Kun ZHOU, Lin-An HE, Yi LI, Yu-Wen HE, Wei-Chuan DU, Sheng-Zhe LIU, Liang ZHANG, Yao HU, Liang SONG, Song-Xin GAO, Chun TANG. Design considerations to increase the power-efficiency of a supper-large-optical-cavity waveguide structure diode laser[J]. Journal of Infrared and Millimeter Waves, 2022, 41(6): 958

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Feb. 21, 2022

    Accepted: --

    Published Online: Feb. 6, 2023

    The Author Email: Wei-Chuan DU (weichuandu@126.com)

    DOI:10.11972/j.issn.1001-9014.2022.06.003

    Topics