Chinese Journal of Liquid Crystals and Displays, Volume. 39, Issue 2, 237(2024)

Defect detection algorithm of improved YOLOv5s solar cell

Xueling PENG1,2, Shanling LIN1,2、*, Zhixian LIN1,2, and Tailiang GUO2
Author Affiliations
  • 1School of Advanced Manufacturing,Fuzhou University,Quanzhou 362252,China
  • 2Fujian Science and Technology Innovation Laboratory for Photoelectric Information,Fuzhou 350116,China
  • show less
    Figures & Tables(14)
    Contextual Transformer(CoT)block
    Conventional self-attention block
    Convolution attention module
    Channel attention module
    Spatial attention module
    CARAFE module structure
    Improved YOLOv5s network structure
    Dataset defect type.(a)Cell with broken areas;(b)Cell with obvious bright areas;(c)Cell with black or gray border areas;(d)Scratchy cell;(e)No-electricity,showing the black area of the cell.
    Comparison of mAP@0.5
    Comparison of detection results before and after improvement.(a)Original drawing;(b)YOLOv5s detection effect drawing;(c)Improved YOLOv5s detection effect drawing.
    • Table 1. Experimental environment configuration

      View table
      View in Article

      Table 1. Experimental environment configuration

      名称环境配置
      操作系统Windows 10 64位
      GPUNVIDIA GeForce RTX 2080Ti
      内存16 GB
      PythonPython 3.8.2版本
      深度学习框架Pytorch1.11.0
    • Table 2. Ablation experiments

      View table
      View in Article

      Table 2. Ablation experiments

      CoTCBAMCARAFEWIoUPrecisionRecallmAP@0.5检测耗时/ms
      ××××0.8610.8490.86811.9
      ×××0.8290.8650.89513.1
      ×××0.8650.870.88511.6
      ×××0.8710.8680.88312.3
      ×××0.8170.8740.87311.5
      ××0.8630.8780.87715.7
      ×0.8790.8810.88717.4
      0.9160.890.90113.1
    • Table 3. Comparison of detection performance of different attention mechanisms

      View table
      View in Article

      Table 3. Comparison of detection performance of different attention mechanisms

      算法模型Param/106PrecisionRecallmAP@0.5
      YOLOv5s7.020.8610.8490.868
      YOLOv5s_SE7.050.7910.8640.848
      YOLOv5s_CA7.040.8650.8350.864
      YOLOv5s_NWD7.020.8380.8760.875
      YOLOv5s_NAMAttention7.020.8550.8160.84
      YOLOv5s_CBAM6.70.8650.870.885
    • Table 4. Comparison experiments

      View table
      View in Article

      Table 4. Comparison experiments

      ModelPrecisionRecallmAP@0.5FPSParameters/M
      faster-rcnn0.8310.6680.7731853.8
      EfficientDet0.8830.5610.7141570.6
      SSD0.8570.5060.7492657.9
      detr0.8010.6410.7292399.3
      YOLOv30.8330.7720.8434661.5
      YOLOv70.8730.7840.8334036.5
      YOLOv7_tiny0.8650.8150.868466.0
      YOLOV5s0.8610.8490.868847.02
      本文算法0.9160.890.901767.8
    Tools

    Get Citation

    Copy Citation Text

    Xueling PENG, Shanling LIN, Zhixian LIN, Tailiang GUO. Defect detection algorithm of improved YOLOv5s solar cell[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(2): 237

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 5, 2023

    Accepted: --

    Published Online: Apr. 24, 2024

    The Author Email: Shanling LIN (sllin@fzu.edu.cn)

    DOI:10.37188/CJLCD.2023-0249

    Topics