Acta Laser Biology Sinica, Volume. 33, Issue 4, 365(2024)
Role of ceRNA Regulatory Network in Colorectal Cancer Based on Bioinformatics
[1] [1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249.
[2] [2] DEKKER E, TANIS P J, VLEUGELS J L A, et al. Colorectal cancer[J]. Lancet, 2019, 394(10207): 1467-1480.
[3] [3] BUCCAFUSCA G, PROSERPIO I, TRALONGO A C, et al. Early colorectal cancer: diagnosis, treatment and survivorship care[J]. Critical Reviews in Oncology Hematology, 2019, 136: 20-30.
[4] [4] CIARDIELLO F, CIARDIELLO D, MARTINI G, et al. Clinical management of metastatic colorectal cancer in the era of precision medicine[J]. CA: A Cancer Journal for Clinicians, 2022, 72(4): 372-401.
[5] [5] AUFIERO S, VAN DEN HOOGENHOF M M G, RECKMAN Y J, et al. Cardiac circRNAs arise mainly from constitutive exons rather than alternatively spliced exons[J]. RNA, 2018, 24(6): 815-827.
[6] [6] ZHOU W Y, CAI Z R, LIU J, et al. Circular RNA: metabolism, functions and interactions with proteins[J]. Molecular Cancer, 2020, 19(1): 172.
[7] [7] CHEN L, SHAN G. CircRNA in cancer: fundamental mechanism and clinical potential[J]. Cancer Letters, 2021, 505: 49-57.
[8] [8] JU J, SONG Y N, CHEN X Z, et al. CircRNA is a potential target for cardiovascular diseases treatment[J]. Molecular and Cellular Biochemistry, 2022, 477(2): 417-430.
[9] [9] ZHOU Z, SUN B, HUANG S, et al. Roles of circular RNAs in immune regulation and autoimmune diseases[J]. Cell Death and Disease, 2019, 10(7): 503.
[10] [10] ZHANG Q, WANG W, ZHOU Q, et al. Roles of circRNAs in the tumour microenvironment[J]. Molecular Cancer, 2020, 19(1): 14.
[11] [11] CHEN L L. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Molecular Cell Biology, 2020, 21(8): 475-490.
[12] [12] SHI Y, JIA X, XU J. The new function of circRNA: translation[J]. Clinical and Translational Oncology, 2020, 22(12): 2162-2169.
[13] [13] CAO L, WANG M, DONG Y, et al. Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1alpha/HK2[J]. Cell Death and Disease, 2020, 11(2): 145.
[14] [14] GUO X, ZHOU Q, SU D, et al. Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis[J]. Molecular Cancer, 2020, 19(1): 83.
[15] [15] LIU J, CHEN S, LI Z, et al. Hsa_circ_0040809 and hsa_circ_0000467 promote colorectal cancer cells progression and construction of a circRNA-miRNA-mRNA network[J]. Front Genet, 2022, 13: 993727.
[16] [16] MENG S, ZHOU H, FENG Z, et al. CircRNA: functions and properties of a novel potential biomarker for cancer[J]. Molecular Cancer, 2017, 16(1): 94.
[17] [17] YIN Y, LONG J, HE Q, et al. Emerging roles of circRNA in formation and progression of cancer[J]. Journal of Cancer, 2019, 10(21): 5015-5021.
[18] [18] RAO R, SHAH S, BHATTACHARYA D, et al. Ligand-gated ion channels as targets for treatment and management of cancers[J]. Frontiers in Physiology, 2022, 13: 839437.
[19] [19] BAKER R W, HUGHSON F M. Chaperoning SNARE assembly and disassembly[J]. Nature Reviews Molecular Cell Biology, 2016, 17(8): 465-479.
[20] [20] WANG T, LI L, HONG W. SNARE proteins in membrane trafficking[J]. Traffic, 2017, 18(12): 767-775.
[21] [21] YOON T Y, MUNSON M. SNARE complex assembly and disassembly[J]. Current Biology, 2018, 28(8): 397-401.
[22] [22] HUANG Q, LIAN C, DONG Y, et al. SNAP25 inhibits glioma progression by regulating synapse plasticity via GLS-mediated glutaminolysis[J]. Frontiers in Oncology, 2021, 11: 698835.
[23] [23] RABBEN H L, ANDERSEN G T, OLSEN M K, et al. Neural signaling modulates metabolism of gastric cancer[J]. International Journal of Molecular Sciences, 2021, 24(2): 102091.
[24] [24] SUN H, ZHANG W, CHU Y, et al. Prognostic evaluation of pancreatic cancer based on the model of chemo-radiotherapy resistance-related genes[J]. Journal of Gastrointestinal Oncology, 2023, 14(3): 1525-1545.
[25] [25] ZOU J, DUAN D, YU C, et al. Mining the potential prognostic value of synaptosomal-associated protein 25 (SNAP25) in colon cancer based on stromal-immune score[J]. PeerJ, 2020, 8: e10142.
[26] [26] WATSON C J, TEMPEL B L. A new Atp2b2 deafwaddler allele, dfwi5, interacts strongly with Cdh23 and other auditory modifiers[J]. Hearing Research, 2013, 304: 41-48.
[27] [27] BRUCE J I E. Metabolic regulation of the PMCA: role in cell death and survival[J]. Cell Calcium, 2018, 69: 28-36.
[28] [28] HATANO Y, YAMADA Y, HATA K, et al. Genetic ablation of a candidate tumor suppressor gene, rest, does not promote mouse colon carcinogenesis[J]. Cancer Science, 2011, 102(9): 1659-1664.
[29] [29] LEBEDEVA I V, MAKONDI P T, CHU C M, et al. Prediction of novel target genes and pathways involved in irinotecan-resistant colorectal cancer[J]. PLoS One, 2017, 12(7): e0180616.
[30] [30] YAN L, GONG Y Z, SHAO M N, et al. Distinct diagnostic and prognostic values of -aminobutyric acid type A receptor family genes in patients with colon adenocarcinoma[J]. Oncology Letters, 2020, 20(1): 275-291.
[31] [31] PALANIAPPAN A, RAMAR K, RAMALINGAM S. Computational identification of novel stage-specific biomarkers in colorectal cancer progression[J]. PLoS One, 2016, 11(5): e0156665.
[32] [32] LI S, YAN G, LIU W, et al. Circ0106714 inhibits tumorigenesis of colorectal cancer by sponging miR-942-5p and releasing DLG2 via Hippo-YAP signaling[J]. Molecular Carcinogenesis, 2020, 59(12): 1323-1342.
[33] [33] CHEN W, AN P, QUAN X J, et al. Ca2+/calmodulin-dependent protein kinase II regulates colon cancer proliferation and migration via ERK1/2 and p38 pathways[J]. World Journal of Gastroenterology, 2017, 23(33): 6111-6118.
Get Citation
Copy Citation Text
LIU Lin, FEI Sujuan, MIAO Bei. Role of ceRNA Regulatory Network in Colorectal Cancer Based on Bioinformatics[J]. Acta Laser Biology Sinica, 2024, 33(4): 365
Category:
Received: Oct. 19, 2023
Accepted: Dec. 20, 2024
Published Online: Dec. 20, 2024
The Author Email: Bei MIAO (miaobei@xzhmu.edu.cn)