Journal of Quantum Optics, Volume. 29, Issue 4, 40202(2023)
Vibration, Thermal Analysis and Stability Evaluation of 30 cm Transportable Ultra-Stable Cavity
[1] [1] ABBOTT B P, ABBOTT R, ADHIKARI R, et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory[J]. Reports on Progress in Physics, 2009, 72(7):076901. DOI: 10.1088/0034-4885/72/7/076901.
[2] [2] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of Gravitational Waves from a Binary Black Hole Merger[J]. Physical Review Letters, 2016, 116(6):061102. DOI: 10.1103/PhysRevLett.116.061102.
[3] [3] OELKER E, HUTSON R B, KENNEDY C J, et al. Demonstration of 4.8×10-17 stability at 1s for two independent optical clocks[J]. Nature Photonics, 2019, 13(10):714-719. DOI: https://doi.org/10.1038/s41566-019-0493-4.
[4] [4] LUDLOW A D, BOYD M M, YE J, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2):637-701. DOI: https://doi.org/10.1103/RevModPhys.87.637.
[5] [5] GILL P. Optical frequency standards[J]. Metrologia, 2005, 42(3):S125-S137. DOI: 10.1088/0026-1394/42/3/S13.
[6] [6] GOHLE C, UDEM T, HERRMANN M, et al. A frequency comb in the extreme ultraviolet[J]. Nature, 2005, 436(7048):234-237. DOI: https://doi.org/10.1038/nature03851.
[7] [7] JONES R J, MOLL K D, THORPE M J, et al. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity[J]. Physical Review Letters, 2005, 94(19):193201. DOI: 10.1103/PhysRevLett.94.193201.
[8] [8] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. GW170104: Observation of a 50-Solar-Mass binary black hole coalescence at redshift 0.2[J]. Physical Review Letters, 2017, 118(22):221101. DOI: 10.1103/PhysRevLett.118.221101.
[9] [9] NOTCUTT M, MA L S, LUDLOW A D, et al. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers[J]. Physical Review A, 2006, 73(3):031804. DOI: 10.1103/PhysRevA.73.031804.
[10] [10] LEVIN Y. Internal thermal noise in the LIGO test masses: A direct approach[J]. Physical Review D, 1998, 57(2):659-663. DOI: 10.1103/PhysRevD.57.659.
[11] [11] COLE G D, ZHANG W, MARTIN M J, et al. Tenfold reduction of brownian noise in high-reflectivity optical coatings[J]. Nature Photonics, 2013, 7(8):644-650. DOI: https://doi.org/10.1038/nphoton.2013.174.
[12] [12] KESSLER T, LEGERO T, STERR U. Thermal noise in optical cavities revisited[J]. Journal of the Optical Society of America B-Optical Physics, 2012, 29(1):178-184. DOI: https://doi.org/10.1364/JOSAB.29.000178.
[13] [13] JIANG Y Y, LUDLOW A D, LEMKE N D, et al. Making optical atomic clocks more stable with 10-16-level laser stabilization[J]. Nature Photonics, 2011, 5(3):158-161. DOI: https://doi.org/10.1038/nphoton.2010.313.
[14] [14] HAEFNER S, FALKE S, GREBING C, et al. 8×10-17 fractional laser frequency instability with a long room-temperature cavity[J]. Optics Letters, 2015, 40(9):2112-2115. DOI: https://doi.org/10.1364/OL.40.002112.
[15] [15] JIN L, JIANG Y, YAO Y, et al. Laser frequency instability of 2×10-16 by stabilizing to 30-cm-long Fabry-Perot cavities at 578 nm[J]. Optics Express, 2018, 26(14):18699-18707. DOI: 10.1364/OE.26.018699.
[16] [16] CAO J, ZHANG P, SHANG J, et al. A compact, transportable single-ion optical clock with 7.8×10-17 systematic uncertainty[J]. Applied Physics B: Lasers and Optics, 2017, 123(4):112. DOI: 10.1007/s00340-017-6671-5.
[17] [17] GROTTI J, KOLLER S, VOGT S, et al. Geodesy and metrology with a transportable optical clock[J]. Nature Physics, 2018, 14(5):437-455. DOI: https://doi.org/10.1038/s41567-017-0042-3.
[18] [18] TAKAMOTO M, USHIJIMA I, OHMAE N, et al. Test of general relativity by a pair of transportable optical lattice clocks[J]. Nature Photonics, 2020, 14(7):411-425. DOI: https://doi.org/10.1038/s41566-020-0619-8.
[19] [19] KOLLER SB, GROTTI J, VOGT S, et al. Transportable optical lattice clock with 7×10-17 Uncertainty[J]. Physical Review Letters, 2017, 118(7):073601. DOI: 10.1103/PhysRevLett.118.073601.
[20] [20] PREMOLI A, TAVELLA P. A revisited three-cornered hat method for estimating frequency standard instability[J]. IEEE Transactions on Instrumentation and Measurement, 1993, 42(1):7-13. DOI: 10.1109/19.206671.
[21] [21] XIAO R, XU Y, WANG Y, et al. Transportable 30 cm optical cavity based ultrastable lasers with beating instability of 2×10-16[J]. Applied Physics B: Lasers and Optics, 2022, 128(12):220. DOI: 10.1007/s00340-022-07938-0.
[22] [22] ALNIS J, MATVEEV A, KOLACHEVSKY N, et al. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities[J]. Physical Review A, 2008, 77(5):053809. DOI: 10.1103/PhysRevA.77.053809.
[23] [23] VERNOTTE F, LANTZ E. Three-cornered hat and groslambert covariance: A first attempt to assess the uncertainty domains[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2019, 66(3):643-653. DOI: 10.1109/TUFFC.2018.2889703.
[24] [24] VERNOTTE F, DELPORTE M. The three-cornered hat method: An attempt to identify some clock correlations[C]// Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition, August 23-27, 2004. New York: IEEE, 2005.
Get Citation
Copy Citation Text
GUO Cheng-qi, JIANG Zi-wen, WANG Bing, ZHU Qiang, XIONG Zhuan-xian. Vibration, Thermal Analysis and Stability Evaluation of 30 cm Transportable Ultra-Stable Cavity[J]. Journal of Quantum Optics, 2023, 29(4): 40202
Received: May. 4, 2023
Accepted: Aug. 7, 2025
Published Online: Aug. 7, 2025
The Author Email: