Laser & Optoelectronics Progress, Volume. 56, Issue 12, 122801(2019)

Classification of Tree Species Based on LiDAR Point Cloud Data

Xiangyu Chen1,**... Ting Yun1, Lianfeng Xue1 and Ying'an Liu2,* |Show fewer author(s)
Author Affiliations
  • 1 College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
  • 2 Library of Nanjing Forestry University, Nanjing, Jiangsu 210037, China
  • show less
    References(20)

    [1] Lu X K. Tree species classification and 3D visualization based on airborne LiDAR and hyperspectral data[D]. Chengdu: University of Electric Science and Technology of China(2018).

    [2] Zhao F. Forest parameter extraction using LiDAR data and digital camera image[D]. Beijing: Chinese Academy of Forestry(2007).

    [9] Zhao D. Individual tree parameters extraction based on lidar and hyper-spectrum data[D]. Beijing: Chinese Academy of Forestry(2012).

    [10] [10] Li JL, Hu BX, Noland T L. Classification of tree species based on structural features derived from high density LiDAR data[J]. Agricultural and ForestMeteorology, 2013, 171/172: 104-114.

    [11] Wei T. Tree-level structure characterization based on static terrestrial laser scanning point clouds[D]. Tangshan: North China University of Science and Technology(2015).

    [17] Haralick R M, Shanmugam K. SMC-[J]. Dinstein I. Textural features for image classification. IEEE Transactions on Systems, Man, Cybernetics, 3, 610-621(1973).

    Tools

    Get Citation

    Copy Citation Text

    Xiangyu Chen, Ting Yun, Lianfeng Xue, Ying'an Liu. Classification of Tree Species Based on LiDAR Point Cloud Data[J]. Laser & Optoelectronics Progress, 2019, 56(12): 122801

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Nov. 23, 2018

    Accepted: Jan. 9, 2019

    Published Online: Jun. 13, 2019

    The Author Email: Xiangyu Chen (1016733396@qq.com), Ying'an Liu (lyastat@163.com)

    DOI:10.3788/LOP56.122801

    Topics