Chinese Journal of Lasers, Volume. 49, Issue 3, 0303001(2022)

Switchable Broadband Polarization Conversion Metasurface Based on PIN Diodes

Damin Li1, Jiayun Wang1, Xiaoqiang Su2, Lijuan Dong2、*, Xinwei Chen1, Wenmei Zhang1, and Rongcao Yang1、**
Author Affiliations
  • 1School of Physics & Electronic Engineering, Shanxi University, Taiyuan, Shanxi 030006, China
  • 2Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Datong, Shanxi 037009, China
  • show less
    References(26)

    [1] Sievenpiper D, Zhang L J, Broas R F J et al. High-impedance electromagnetic surfaces with a forbidden frequency band[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2059-2074(1999).

    [2] Smith D R, Kroll N. Negative refractive index in left-handed materials[J]. Physical Review Letters, 85, 2933-2936(2000).

    [3] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 312, 1780-1782(2006).

    [4] Yan T, Ma Q, Sun S et al. Polarization multiplexing hologram realized by anisotropic digital metasurface[J]. Advanced Theory and Simulations, 4, 2100046(2021).

    [5] Li L L, Cui T L, Ji W et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 8, 197(2017).

    [6] Gao Y F, Gu J Q, Jia R D et al. Polarization independent achromatic meta-lens designed for the terahertz domain[J]. Frontiers in Physics, 8, 606693(2020).

    [7] Gong J, Zong R, Li H et al. Dynamically tunable broadband terahertz metamaterial absorber based on vanadium dioxide[J]. Laser & Optoelectronics Progress, 58, 0316001(2021).

    [8] Cui Z J, Wang Y, Zhu D Y et al. Perfect absorption conditions and absorption characteristics of terahertz metamaterial absorber[J]. Chinese Journal of Lasers, 46, 0614023(2019).

    [9] Rao Y F, Pan L, Ouyang C M et al. Asymmetric transmission of linearly polarized waves based on Mie resonance in all-dielectric terahertz metamaterials[J]. Optics Express, 28, 29855-29864(2020).

    [10] Tao X, Qi L M, Yang J et al. Experimental verification of a broadband asymmetric transmission metamaterial in the terahertz region[J]. RSC Advances, 10, 6179-6184(2020).

    [11] Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013).

    [12] Gao X, Han X, Cao W P et al. Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface[J]. IEEE Transactions on Antennas and Propagation, 63, 3522-3530(2015).

    [13] Tian Y S, Guo X H, Dai L L et al. Broadband tunable terahertz polarizers based on Dirac semimetal[J]. Chinese Journal of Lasers, 46, 0614033(2019).

    [14] Li J X, Feng J L, Li B et al. Dual-band transmissive cross-polarization converter with extremely high polarization conversion ratio using transmitarray[J]. Materials, 12, 1827(2019).

    [15] Lu T G, Qiu P Z, Lian J Q et al. Ultrathin and broadband highly efficient terahertz reflective polarization converter based on four L-shaped metamaterials[J]. Optical Materials, 95, 109230(2019).

    [16] Nguyen T Q H, Nguyen T K T, Nguyen T Q M et al. Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications[J]. Optics Communications, 486, 126773(2021).

    [17] Yang Z H, Jiang M Z, Liu Y C et al. Tunable bandwidth terahertz polarization converter based on vanadium dioxide hybrid metasurface[J]. Chinese Journal of Lasers, 48, 1714001(2021).

    [18] Ma X L, Huang C, Pu M B et al. Multi-band circular polarizer using planar spiral metamaterial structure[J]. Optics Express, 20, 16050-16058(2012).

    [19] Zang X F, Liu S J, Gong H H et al. Dual-band superposition induced broadband terahertz linear-to-circular polarization converter[J]. Journal of the Optical Society of America B, 35, 950-957(2018).

    [20] Ghosh S K, Das S, Bhattacharyya S. Transmittive-type triple-band linear to circular polarization conversion in THz region using graphene-based metasurface[J]. Optics Communications, 480, 126480(2021).

    [21] Chang C C, Zhao Z, Li D et al. Broadband linear-to-circular polarization conversion enabled by birefringent off-resonance reflective metasurfaces[J]. Physical Review Letters, 123, 237401(2019).

    [22] Wang S Y, Liu W, Geyi W. A circular polarization converter based on in-linked loop antenna frequency selective surface[J]. Applied Physics B, 124, 1-8(2018).

    [23] Wang M J, Zhai Z Z. Wide-angle circular polarization converter based on a metasurface of Z-shaped unit cells[J]. Frontiers in Physics, 8, 527394(2020).

    [24] Nilotpal , Nama L, Bhattacharyya S et al. A metasurface-based broadband quasi nondispersive cross polarization converter for far infrared region[J]. International Journal of RF and Microwave Computer-Aided Engineering, 29, 21889(2019).

    [25] Zhou X T, Jin R C, Wang J et al. All-metal metasurface polarization converter in visible region with an in-band function[J]. Applied Physics Express, 12, 092010(2019).

    [27] Hofmann W, Bornkessel C, Schwind A et al. Challenges of RF absorber characterization: comparison between RCS- and NRL-arch-methods[C], 370-375(2019).

    Tools

    Get Citation

    Copy Citation Text

    Damin Li, Jiayun Wang, Xiaoqiang Su, Lijuan Dong, Xinwei Chen, Wenmei Zhang, Rongcao Yang. Switchable Broadband Polarization Conversion Metasurface Based on PIN Diodes[J]. Chinese Journal of Lasers, 2022, 49(3): 0303001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 6, 2021

    Accepted: Jun. 18, 2021

    Published Online: Jan. 18, 2022

    The Author Email: Dong Lijuan (donglijuan_2012@163.com), Yang Rongcao (sxdxyrc@sxu.edu.cn)

    DOI:10.3788/CJL202249.0303001

    Topics