Piezoelectrics & Acoustooptics, Volume. 44, Issue 1, 35(2022)
Research on Feedforward Compensation of Piezoelectric Ceramics Based on Deep Neural Network(DNN)
[4] [4] LAI G,ZHI L,YUN Z,et al.Adaptive fuzzy tracking control of nonlinear systems with asymmetric actuator backlash based on a new smooth inverse[J].IEEE Transactions on Cybernetics,2016,46(6):1250-1262.
[7] [7] HEJDA P,ZELINKA T.Generalized preisach model of hysteresis-theory and experiment[J].Czechoslovak Journal of Physics,1990,40(1):57-68.
[8] [8] LI C J,BEIGI H,LI S Y,et al.Nonlinear piezo-actuator control by learning self-tuning regulator[J]. Journal of Dynamic Systems Measurement and Control,1993,15(4):720-723.
[9] [9] ISMAIL M,IKHOUANE F,RODELLAR J.The hysteresis bouc-wen model, a survey[J].Archives of Computational Methods in Engineering,2009,16(2):161-188.
[10] [10] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Las Vegas,NV,USA:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[15] [15] DIEDERIK K,JIMMY B.Adam: A method for stochastic optimization[DB/OL].http://www.arxiv.org/,2014-12-22.
Get Citation
Copy Citation Text
XIONG Yongcheng, JIA Wenhong, ZHANG Limin, ZHENG Lifang. Research on Feedforward Compensation of Piezoelectric Ceramics Based on Deep Neural Network(DNN)[J]. Piezoelectrics & Acoustooptics, 2022, 44(1): 35
Received: Sep. 22, 2021
Accepted: --
Published Online: Mar. 16, 2022
The Author Email: